Summary
In recent years, several new models for network flows have been analyzed, inspired by emerging telecommunication technologies. These include models of resilient flow, motivated by the introduction of high capacity optical links, coloured flow, motivated by Wavelength-Division-Multiplexed optical networks, unsplittable flow motivated by SONET networks, and confluent flow motivated by next-hop routing in internet protocol (IP) networks. In each model, the introduction of new side-constraints means that a max-flow min-cut theorem does not necessarily hold, even in the setting where all demands are destined to a common node (sink) in the network. In such cases, one may seek bounds on the “flow-cut gap” for the model. Such approximate max-flow min-cut theorems are a useful measure for bounding the impact of new technology on congestion in networks whose traffic flows obey these side constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C., Orlin, J.: On multi-route maximum flows in networks. Networks 39, 43–52 (2002)
Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000)
Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
Anshelevich, E., Zhang, L.: Path decomposition under a new cost measure with applications to optical network design. In: European Symposium on Algorithms (ESA), pp. 28–39 (2004)
Bartholdi, J.J., Orlin, J.B., Ratliff, H.D.: Cyclic scheduling via integer programs with circular ones. Oper. Res. 28, 1074–1085 (1980)
Baum, S., Trotter, L.E. Jr.: Integer rounding and polyhedral decomposition for totally unimodular systems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research (Proceedings of Workshop Bad Honnef, 1977). Lecture Notes in Economics and Mathematical Systems, vol. 157, pp. 15–23. Springer, Berlin (1978)
Beauquier, B., Hell, P., Perennes, S.: Optimal wavelength-routed multicasting. Discrete Appl. Math. 84, 15–20 (1998)
Beauquier, B., Bermond, J.C., Gargano, L., Hell, P., Perennes, S., Vaccaro, U.: Graph problems arising from wavelength-routing in all-optical networks. Theor. Comput. Sci. 233(1–2), 165–189 (2000)
Bienstock, D., Muratore, G.: Strong inequalities for capacitated survivable network design problems. Math. Program., Ser. A 89, 127–147 (2000)
Brightwell, G., Shepherd, F.B.: Consultancy report: Resilience strategy for a single source-destination pair. LSE CDAM Report 96-22 (August 1996)
Brightwell, G., Oriolo, G., Shepherd, B.: Reserving resilient capacity in a network. SIAM J. Discrete Math. 14, 524–539 (2001)
Brightwell, G., Oriolo, G., Shepherd, B.: Reserving resilient capacity for a single commodity with upper bound constraints. Networks 41(2), 87–96 (2003)
Chekuri, C., Khanna, S.: Edge disjoint paths revisited. In: Proc. of the ACM–SIAM Symposium on Discrete Algorithms (SODA) (2003)
Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow problem. In: Proc. of the ACM Symposium on Theory of Computing (STOC) (2004a)
Chekuri, C., Khanna, S., Shepherd, F.B.: Edge-disjoint paths in planar graphs. In: Proc. of IEEE Foundations of Computer Science (FOCS) (2004b)
Chekuri, C., Claisse, P., Essiambre, R., Fortune, S., Kilper, D., Nithi, K., Lee, W., Saniee, I., Shepherd, B., Wilfong, G., White, C., Zhang, L.: Design tools for transparent optical networks. Bell Labs Techn. J. 11(2), 129–143 (2006a)
Chekuri, C., Khanna, S., Shepherd, F.B.: An \(O(\sqrt{n})\) approximation and integrality gap for disjoint paths and unsplittable flow. Theory Comput. 2–7, 137–146 (2006b)
Chen, J., Rajaraman, R., Sundaram, R.: Meet and merge: approximation algorithms for confluent flow. In: Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), pp. 373–382 (2003)
Chen, J., Kleinberg, R., Lovasz, L., Rajaraman, R., Sundaram, R., Vetta, A.: (Almost) tight bounds and existence theorems for confluent flows. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), pp. 529–538 (2004)
Cosares, S., Saniee, I.: An optimization problem related to balancing loads on SONET rings. Telecommun. Syst. 3, 165–181 (1994)
Costain, G., Kennedy, S., Meagher, C. (eds.): Bellairs Combinatorial Optimization Open Problems. http://www.math.mcgill.ca/~bshepherd/Bellairs/bellairs2007.pdf
Dinitz, Y., Garg, N., Goemans, M.: On the single-source unsplittable flow problem. Combinatorica 19, 17–41 (1999)
Donovan, P., Shepherd, F.B., Vetta, A., Wilfong, G.T.: Degree-constrained network flows. In: Proc. of the ACM Symposium on Theory of Computing (STOC) (2007)
Edmonds, J.: Edge-disjoint branchings. In: Rustin, R. (ed.) Combinatorial Algorithms, Courant Computer Science Symposium 9, Monterey, CA, 1972, pp. 91–96. Academic Press, New York (1973)
Fong, J., Gilbert, A.C., Kannan, S., Strauss, M.: Better alternatives to OSPF routing. Algorithmica 43(1–2), 113–131 (2005)
Ford, L.R. Jr., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)
Ford, L.R. Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
Fortune, S., Sweldens, W., Zhang, L.: Line system design for DWDM networks. In: Proceedings of the 11th International Telecommunications Network Strategy and Planning Symposium (Networks), pp. 315–320 (2004)
Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Areas Commun. 20(4), 756–767 (2002)
Fragouli, C., Soljanin, E.: Network coding fundamentals. Found. Trends Netw. 2(1), 1–133 (2007)
Frank, A.: Personal communication (2005)
Hoffman, A.J.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Bellman, R., Hall, M. (eds.) Combinatorial Analysis, pp. 113–128. Am. Math. Soc., Providence (1960)
Hwang, F.K.: The Mathematical Theory of Nonblocking Switching Networks. Series on Applied Mathematics, vol. 11. World Scientific, River Edge (1998)
Iri, M.: A new method of solving transportation-network problems. J. Oper. Res. Soc. Jpn. 3, 27–87 (1960)
Jung, H.A.: Einer Verallgemeinerung des n-fachen Zusammenhangs für Graphen. Math. Ann. 187, 95–103 (1970)
Kleinberg, J.: Single-source unsplittable flow. In: Proceedings of the 37th Symposium on Foundations of Computer Science (FOCS), pp. 68–77 (1996)
Kleinberg, J.M.: Decision algorithms for unsplittable flow and the half-disjoint paths problem. In: Proc. of the ACM Symposium on Theory of Computing (STOC), pp. 530–539 (1998)
Kleinberg, J.M.: An approximation algorithm for the disjoint paths problem in even-degree planar graphs. In: Proc. of the Foundations of Computer Science (FOCS) (2005)
Kolliopoulos, S., Stein, C.: Improved approximation algorithms for unsplittable flow problems. In: Proceedings of the 38th Symposium on Foundations of Computer Science (FOCS), pp. 426–435 (1997)
Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Kauffman, Los Altos (1992)
Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. Assoc. Comput. Mach. 46(6), 787–832 (1999); Preliminary version in Proc. of the Foundations of Computer Science (FOCS) (1988)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995); Preliminary version in Proc. of IEEE Foundations of Computer Science (FOCS) (1994)
McGregor, A., Shepherd, F.B.: Island hopping and path colouring, with applications to WDM network design. In: Proceedings of the 18th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA) (2007)
Menger, K.: Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115 (1927)
Pippenger, N.: Telephone switching networks. AMS Proc. Symp. Appl. Math. 26, 101–133 (1978)
Pippenger, N.: Communication Networks, Handbook of Theoretical Computer Science (vol. A): Algorithms and Complexity. MIT Press, Cambridge (1991)
Räcke, H.: Minimizing congestion in general networks. In: Proc. of the Foundations of Computer Science (FOCS) (2002)
Robertson, N., Seymour, P.D.: Outline of a disjoint paths algorithm. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-Layout. Springer, New York (1990)
Robertson, N., Seymour, P.D.: Graph minors XIII: the disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
Schrijver, A., Seymour, P., Winkler, P.: The ring loading problem. SIAM J. Discrete Math. 11(1), 1–14 (1998); Reprinted in SIAM Rev. 41(1) 777–791 (1999)
Shepherd, F.B., Vetta, A.: Visualizing, finding and packing dijoins. In: Avis, D., Hertz, A., Marcotte, O. (eds.) Graph Theory and Combinatorial Optimization, pp. 219–254. Kluwer, New York (2005)
Shepherd, F.B., Wilfong, G.T.: Multilateral transport games. In: INOC (2005)
Skutella, M.: Approximating the single source unsplittable min-cost flow problem. Math. Program., Ser. B 91, 493–514 (2002)
Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph coloring. In: Proc. of the ACM–SIAM Symposium on Discrete Algorithms (SODA), pp. 830–831 (2003)
Yeung, R.R., Li, S.-Y.R., Cai, N., Zhang, Z.: Network Coding Theory. Now Publishers, Boston (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shepherd, F.B. (2009). Single-Sink Multicommodity Flow with Side Constraints. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-76796-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76795-4
Online ISBN: 978-3-540-76796-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)