Summary
We present a class of instances of the existence of a second object of a specified type, in fact, of an even number of objects of a specified type, which generalizes the existence of an equilibrium for bimatrix games. The proof is an abstract generalization of the Lemke–Howson algorithm for finding an equilibrium of a bimatrix game.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cameron, K.: Thomason’s algorithm for finding a second Hamiltonian circuit through a given edge in a cubic graph is exponential on Krawczyk’s graphs. Discrete Math. 235, 69–77 (2001)
Cameron, K., Edmonds, J.: Some graphic uses of an even number of odd nodes. Ann. Inst. Fourier 49, 815–827 (1999)
Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium, In: Proc. of FOCS 2006, pp. 261–272 (2006)
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Algorithms and Combinatorics, vol. 21. Springer, Berlin (2008)
Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)
Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74(2), 397–429 (2006)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)
Thomason, A.G.: Hamiltonian cycles and uniquely edge colourable graphs. Ann. Discrete Math. 3, 259–268 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Edmonds, J. (2009). Euler Complexes. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-76796-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76795-4
Online ISBN: 978-3-540-76796-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)