Summary
We present a new algorithm for the problem of determining the intersection of a half-line \(\Delta_{u}=\{x\in \mathbb{R}^{N}\:|\:x=\lambda u\;\mathrm {for}\;\lambda \geq 0\}\) with a polymatroid. We then propose a second algorithm which generalizes the first algorithm and solves a parametric linear program. We prove that these two algorithms are strongly polynomial and that their running time is O(n 8+γ n 7) where γ is the time for an oracle call. The second algorithm gives a polynomial algorithm to solve the submodular function minimization problem and to compute simultaneously the strength of a network with complexity bound O(n 8+γ n 7).
This research was supported by a grant of “France Telecom R&D Sophia Antipolis” during three years.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bixby, R.E., Cunningham, W.H., Topkis, D.M.: The partial order of a polymatroid extreme point. Math. Oper. Res. 10(3), 367–378 (1985)
Cheng, E., Cunningham, W.H.: A faster algorithm for computing the strength of a network. Inf. Process. Lett. 49, 209–212 (1994)
Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory, Ser. B 36, 161–188 (1984)
Cunningham, W.H.: Optimal attack and reinforcement of a network. J. Assoc. Comput. Mach. 32(3), 549–561 (1985a)
Cunningham, W.H.: On submodular function minimization. Combinatorica 5, 185–192 (1985b)
Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications, Proceedings of the Calgary International Conference, pp. 69–87. Gordon and Breach, New York (1970)
Fleischer, L.: Recent progress in submodular function minimization. Optima 64, 1–11 (2000)
Fleischer, L., Iwata, S.: Improved algorithms for submodular function minimization and submodular flow. In: STOC ’00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 107–116 (2000)
Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5, 186–196 (1980)
Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics, vol. 58. Elsevier, Amsterdam (2005)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)
Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32, 833–840 (2003)
Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial time algorithm for minimizing submodular functions. J. Assoc. Comput. Mach. 48, 761–777 (2001)
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Algorithms and Combinatorics, vol. 21. Springer, Berlin (2008)
Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math. Program. 7, 97–107 (1974)
Nagano, K.: A strongly polynomial algorithm for line search in submodular polyhedra. Mathematical engineering technical report, Department of Mathematical Informatics, The University of Tokyo (2004)
Nagano, K.: A faster parametric submodular function minimization algorithm and applications. Mathematical engineering technical report, Department of Mathematical Informatics, The University of Tokyo (2007)
Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. In: Proc of IPCO, pp. 240–251 (2007)
Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory, Ser. B 80(2), 346–355 (2000)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)
Skoda, A.: Force d’un graphe, multicoupes et fonctions sous-modulaires: aspects structurels et algorithmiques. PhD thesis, Université Pierre et Marie Curie, Paris 6 (2007)
Vygen, J.: A note on Schrijver’s submodular function minimization algorithm. J. Comb. Theory, Ser. B 88(2), 399–402 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Fonlupt, J., Skoda, A. (2009). Strongly Polynomial Algorithm for the Intersection of a Line with a Polymatroid. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-76796-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76795-4
Online ISBN: 978-3-540-76796-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)