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Summary. We present a new algorithm for the problem of determining the inter-

section of a half-line Δu = {x ∈ IRN | x = λu for λ ≥ 0} with a polymatroid. We

then propose a second algorithm which generalizes the first algorithm and solves a

parametric linear program. We prove that these two algorithms are strongly poly-

nomial and that their running time is O(n8 + γn7) where γ is the time for an oracle

call. The second algorithm gives a polynomial algorithm to solve the submodular

function minimization problem and to simultaneously compute the strength of a

network with complexity bound O(n8 + γn7).

Key words: Algorithm, graph, strength of a graph, submodular function,
matroid, polymatroid, parametric linear programming.

1 Introduction

Let f be a set function on a finite set N = {1, . . . , n}. f is submodular if

f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T )

for all subsets S, T of N . If f is also normalized (f(∅) = 0) and monotone
(f(U) ≤ f(T ) whenever U ⊆ T ), the polymatroid associated with f is defined
by:

P (f) = {x ∈ IRN | x ≥ 0, x(T ) ≤ f(T ) for each T ⊆ N}.

�� This research has been supported by a grant of ”France Telecom R&D Sophia

Antipolis” during three years.



Let u be a vector of IRN which describes the direction of the half-line
Δu = {x ∈ IRN | x = λu for λ ≥ 0}. P (f) ∩ Δu is a closed interval [0, λmax]u
where λmax is the value of the linear program:

max {λ | x ∈ P (f) ∩ Δu} (P)

This problem will be called the Intersection Problem.
We propose a strongly polynomial combinatorial algorithm for solving P . This
algorithm called the Intersection Algorithm runs in time O(n8 + γn7) where
γ is the time of an oracle call.
The Intersection Problem has interesting applications: consider the following
parametric linear program:

z(λ) = max

{∑
i∈N

xi | x ∈ P(f), x ≤ λu

}
(Pλ)

Standard results in parametric linear programming show that the function
λ −→ z(λ) is non-decreasing, concave and piecewise linear.
We prove that we need to solve at most n times the Intersection Problem to
obtain a complete description of z(λ). This will be the object of the Para-
metric Intersection Algorithm which is a simple variant of the Intersection
Algorithm. This second algorithm runs also in time O(n8 +γn7). As the solu-
tion of the parametric linear program for a certain choice of the parameter λ

solves the submodular function minimization problem and for another choice
of this parameter provides the value of the Strength of a Network if f is the
rank function of a graphic matroid of a graph, we obtain a strongly polyno-
mial algorithm with complexity bound O(n8 +γn7) for solving simultaneously
these two problems.
Polymatroids were introduced by Edmonds [6]. Examples of submodular func-
tions are described in Fleischer [7], Fujishige [10], Korte and Vygen [14],
Schrijver [20]. The Intersection Problem can be solved in strongly polyno-
mial time using the ellipsoid method [11]. Schrijver [19] and Iwata, Fleischer
and Fujishige [13] independently proposed combinatorial strongly polynomial
algorithms for submodular function minimization. Vygen [22] showed that the
running time of Schrijver’s original algorithm was O(n8 +γn7) which was also
the improvement given by Fleischer and Iwata [8]. Iwata [12] improved this
bound to O((n7 + γn6) log n). Orlin [18] developed a strongly polynomial al-
gorithm in O(n6 + γn5) which is the best complexity bound known so far.
All these approaches depend on the decomposition of feasible points of the
polymatroid as convex combination of extreme points of this polytope; this
idea was originated by Cunningham in [3] and [5]. Our own approach is based
on the polymatroid itself and not on the base polyhedron associated to the
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polymatroid as do the above-cited authors; this is a major difference. Note
however that an n-dimensional polymatroid can be seen as a projection of an
(n + 1)-dimensional base polyhedron (see Fujishige [10]) but this observation
can not be easily exploited from an algorithmic point of view.
As a generalization of lexicographically optimal flow of Megiddo [15], Fujishige
[9] introduced the concept of lexicographically optimal base of a polymatroid.
Problem Pλ is known to be equivalent to the lexicographically optimal base
problem [10] but we will not use this result.
Cunningham [4] in his study of the strength of a network had an approach
based on the forest polytope of a graph. In [2], Cheng and Cunningham stud-
ied, for the problem of the strength of a network, a parametric linear program
which can be seen as a specific case of our parametric linear program.
Nagano [16] developped a strongly polynomial algorithm for the intersection
of an extended polymatroid and a straight line, based on a direct application
of the submodular function minimization problem. Although our algorithm is
only designed for the intersection with a polymatroid, it provides a new algo-
rithm for the submodular function minimization problem. Recently Nagano
[17], extending Orlin’s algorithm [18] proposed an algorithm in O(n6 + γn5)
to solve the parametric problem Pλ. Our algorithm is not as good as Nagano’s
in time complexity but we hope that the interest of our approach is justified
by the method we employ : we work directly on the polymatroid itself and we
do not use known submodular function minimization algorithms.
Many of the results presented here appear in the Ph.D thesis of Skoda [21].
The content of the paper can be summarized as follows. Section 2 recalls basic
definitions and properties of polymatroids and present the general framework
of the Intersection Algorithm. Section 3 describes the Intersection Algorithm
and evaluates the time complexity of this algorithm. Section 4 describes the
Parametric Intersection Algorithm and proves the strongly polynomiality of
this algorithm; it is also shown in section 4 why this algorithm simultane-
ously solve the submodular minimization problem and finds the strength of
a network. Many of the results in section 4 are standard (see for instance
Fujishige [10]) but we include them with short proofs for completeness. Sec-
tion 5 summarizes the results of the previous sections and proposes some new
problems.

2 Preliminaries

1. If ∅ ⊆ T ⊆ N , define fN\T by

fN\T (A) = f(A) for all ∅ ⊆ A ⊆ N \ T .
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fN\T is normalized, monotone and submodular.
The polymatroid P (fN\T ) is imbedded in the vector space IRN\T ; moreover

P (fN\T ) = P (f) ∩ {x ∈ IRN | xi = 0 for i ∈ T }.

2. We can treat and eliminate the following cases:
if u /∈ IRN

+ , λmax = 0.
If there exists i ∈ N with ui = 0, P (f) ∩ Δu = P (fN\{i}) ∩ Δu and we can
replace N by N \ {i}.
Finally, assume that there exists i ∈ N with f({i}) = 0; for any feasible point
x ∈ P (f), xi = 0 since 0 ≤ xi ≤ f({i}) and [0, λmax]u = P (fN\{i}) ∩ Δu.
If ui > 0, λmax = 0.
If ui = 0, we can replace N by N \ {i}.
So, we will assume from now on that u > 0 and that f({i}) > 0 for all i ∈ N .

3. By order we mean in this paper a subset of N , called the support of the
order, and a total order on this support. Elements in the support will be called
ordered elements and elements not in the support will be called singletons.
{O0,O1, . . . ,Ok, . . . ,Ok} is the set of distinct orders, K = {0, 1, . . . , k, . . . , k}
is the set of upper indices listing the distinct orders.
The order relation of Ok will be denoted ≺k. We will assume that, in the
description of Ok, the elements of the support Sk are sorted in increasing
order with respect to the order relation ≺k:

Ok = [i1, . . . , il, . . . , im].

It was proved by Edmonds [6] that extreme points of P (f) can be generated
by the greedy algorithm: given an order Ok = [i1, . . . , im] with support Sk,
the point ak ∈ IRN whose components are:

ak
i1 = f({i1})

ak
il

= f({i1, . . . , il}) − f({i1, . . . , il−1}) for l = 2, . . . , m

ak
i = 0 for all i ∈ N \ Sk.

is an extreme point of P (f). ak is the extreme point generated by Ok. Ed-
monds proved also that any extreme point of P (f) is generated by an order.
Note also that

ak({i1, . . . , il}) = f({i1, . . . , il}) for l = 1, . . . , m. (1)

Two distinct orders may generate the same extreme point. In [1] Bixby, Cun-
ningham, and Topkis gave a complete characterisation of extreme points of
P (f). In particular they proved that the intersection of all the orders which
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generate the same extreme point is a minimal partial order and two minimal
distinct partial orders generate two distinct extreme points. However we will
not use this result here.

4. We will associate to a matroid order Ok the following oriented graph
G(k):
The node-set of G(k) is {0} ∪ N where 0 is a new element; from now on we
will use the term element rather than node.
The edge-set of G(k) denoted E(k) is defined as follows:

* e = (0, i)k ∈ E(k) if and only if i is a singleton of Ok,
* e = (i, j)k ∈ E(k) if and only if i and j are ordered elements of Ok and

i ≺k j.

If K ⊆ K we define the graph G(K) as:

G(K) = ({0} ∪ N,
⋃

k∈K

E(k)).

Note that G(K) may have (many) parallel edges:
if i ≺k1 j and i ≺k2 j for k1, k2 ∈ K, (i, j)k1 and (i, j)k2 are parallel edges.

5. We will now define two operations on the order Ok = [i1, . . . , im].
If j is a singleton of Ok, Ok′

is obtained by inserting j after the last element
im of Ok and Ok′

will be called the order associated to the edge e = (0, j)k.
If i ≺k j. Ok′

is obtained by moving j just before i in Okand Ok′
will be

called the order associated to the edge e = (i, j)k. In both cases, we say that
Ok′

is an adjacent order to Ok.
Let us set b = ak′ − ak. We recall (see for instance [14] or [20]) and prove for
completeness the following result:

Lemma 1. If Ok′
is associated to e = (0, j)k, bj ≥ 0; bi = 0 for i ∈ N \ {j}.

If Ok′
is associated to e = (i, j)k, bj ≥ 0; bl ≤ 0 for i ≺k l ≺k j or l = i,

bl = 0 otherwise. Moreover
∑n

i=1 bi = 0.

Proof: Set Ts = {r |r ∈ N, r ≺k s} for s ∈ N and let Sk be the support
of Ok.
If Ok′

is associated to e = (0, j)k, bi = 0 for i ∈ N \ {j}.
As f is monotone, bj = aj

k′ − aj
k = f(Sk ∪ {j}) − f(Sk) ≥ 0.

If Ok′
is associated to e = (i, j)k, as Ti ⊂ Tj and f is submodular,

bj = aj
k′ − aj

k = f(Ti ∪ {j}) − f(Ti) − (f(Tj ∪ {j}) − f(Tj)) ≥ 0.

If i ≺k l ≺k j or l = i,
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bl = al
k′ − al

k = f(Tl ∪ {j, l})− f(Tl ∪ {j}) − (f(Tl ∪ {l})− f(Tl)) ≤ 0.

Ok and Ok′
have the same support Sk and

∑n
i=1 ak

i =
∑n

i=1 ak′
i = f(Sk).

Thus
∑n

i=1 bi = 0.

6. We will express points of the half-line Δu as convex combinations of
extreme points of P (f). So, let K ⊆ K. We say that K is a feasible set if the
system:

L(K)

⎧⎨
⎩

αk ≥ 0 for k ∈ K

λu =
∑

k∈K αkak∑
k∈K αk = 1

has a feasible solution. If K is feasible and the vectors ak : k ∈ K are linearly
independent, |K| ≤ n and the solution (αk, k ∈ K; λ) of L(K) is unique. If
this solution is strictly positive, K is called a positive basis. λ will be called
the value of the basis. If K is a feasible set, K contains a positive basis (this
is Caratheodory’s theorem).
A set {b1, . . . , bn} of vectors of IRn is called triangular if:

* bk
i = 0 whenever 1 ≤ k < i ≤ n,

* bk
i ≤ 0 whenever 1 ≤ i < k ≤ n,

* bk
k > 0 for k = 1, . . . , n.

If {b1, . . . , bn} is triangular, the n×n matrix B induced by this set of column-
vectors is upper triangular and non-singular since bk

k > 0 for k = 1, . . . , n.
Thus the linear system μ1b1 + . . . + μnbn = u > 0 has a unique solution
μ = (μ1, . . . , μn) and by standard results in linear algebra the inverse of B is
non-negative and μ > 0.
This solution can be computed in O(n2) time.
Let K be a positive basis and let K1 be a subset of K. Assume that there
exists K ′ ⊆ K and a triangular set {b1, . . . , bn} with
br = ak′

r − akr where k′
r ∈ K ′ and kr ∈ K1 for r = 1, . . . , n.

We can now establish the following easy but fundamental lemma:

Lemma 2. There exists a positive basis contained in (K∪K ′)\{k1} for some
k1 ∈ K1.

Proof: As {b1, . . . , bn} is a triangulated set, there exists n non-negative
numbers μr, r = 1, . . . , n such that

u =
n∑

r=1

μra
k′

r −
n∑

r=1

μra
kr .

So, there exists non-negative numbers νk, k ∈ K1 ∪ K ′ with :
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{
u =

∑
k∈K′ νkak − ∑

k∈K1
νkak∑

k∈K′ νk − ∑
k∈K1

νk = 0.

Let (αk, k ∈ K; λ) be the solution of L(K). For any λ′ > 0,
{

(λ + λ′)u =
∑

k∈K αkak + λ′(
∑

k∈K′ νkak − ∑
k∈K1

νkak)∑
k∈K αk + λ′(

∑
k∈K′ νk − ∑

k∈K1
νk) = 1

Set λ′ = mink∈K1
αk

νk
(if νk = 0, αk

νk
= +∞) and let k1 ∈ K1 be an upper

indice which realizes this minimum. The set (K ∪ K ′) \ {k1} is feasible and
contains a positive basis.
L((K ∪ K ′) \ {k1}) has n + 1 rows and at most 2n columns. By standard
results in linear programming, we can find the new feasible basis in a time
O(n3) (See for instance [14], chapter 4, exercise 5).

7. Our initial positive basis will be K = {1, . . . , n} where Ok = [k] for
i = 1, . . . , n. Thus ak

i = 0 if i = k and ak
k = f({k});

the solution associated to this basis is:

αk :=
λuk

f({k}) k = 1, . . . , n; λ :=
1∑n

k=1
uk

f({k})
.

3 The Intersection Algorithm

Let (αk for k ∈ K; λ) be the solution associated to a positive basis K.
λu(T ) ≤ f(T ) for any T ⊆ N ; equality holds for λmax and Tmin ⊆ N with

f(Tmin)
u(Tmin)

= min
(

f(T )
u(T )

| ∅ ⊂ T ⊆ N

)
.

Optimality occurs when the following condition holds:

Proposition 1. If 0 is not a root of G(K), let T be the set of elements of N

not reachable from 0; λmax = λ and Tmin = T .

Proof: If 0 is not a root of G(K), let T be the set of elements of N not
reachable from 0. Let Ok = [i1, . . . , im] for some k ∈ K.
If (0, i)k is an edge of G(K), i is a singleton of Ok and i /∈ T ;
so T ⊆ {i1, . . . , im}. If r ≺k l and l ∈ T , then r ∈ T . This implies
that T = {i1, i2, . . . , il} for some 1 ≤ l ≤ m; equations (1) imply that
ak(T ) = f(T ).
λu(T ) =

∑
k∈K

αkak(T ) = (
∑

k∈K

αk)f(T ) = f(T ) and our lemma is proved.
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So we will study now the case where 0 is a root of G(K).
As the set K will be updated at each iteration of the algorithm, we can always
assume that K = {1, 2, . . . , |K|}.
Let d1(i) denote the distance from 0 to i for each i ∈ N . d1(i) will be the first
parameter assigned to i.
We say that an element j ∈ N is in bad position on Ok if, either j is a single-
ton of Ok, or if there exists an element i with i ≺k j and d1(i) < d1(j). The
number of elements in bad position on Ok will be denoted α(k) and we set:
K(j) = {k ∈ K | j is in bad position on Ok}.
Our second parameter d2(j) is defined by: d2(j) = maxk∈K(j) α(k).
We say that k ∈ K(j) is critical for j if d2(j) = α(k) and we say that k is a
critical upper-indice of K if k is critical for at least one element of N .
K1 will denote the set of critical indices.
Finally the third parameter d3(j) assigned to j is:
d3(j) = kj = min(k | k is critical for j).
We will also associate to K three parameters:
Δ1(K) =

∑n
j=1 d1(j); Δ2(K) =

∑n
j=1 d2(j); Δ3(K) = |K1|.

Before describing our algorithm, we need to implement a special procedure
which renames the elements of N according to the following rules:

* d1(i) < d1(j) =⇒ i < j (rule 1)
* d1(i) = d1(j), d2(i) > d2(j) =⇒ i < j (rule 2)
* d1(i) = d1(j), d2(i) = d2(j), d3(i) < d3(j) =⇒ i < j (rule 3)
* d1(i) = d1(j), d2(i) = d2(j), d3(i) = d3(j) = k, i ≺k j =⇒ i < j (rule 4)

Note that there exists a unique way to rename the elements of N if we apply
these four rules (except for singletons which can be renamed in many ways
since rule 4 do not apply to singletons).
Let j ∈ N ; if d1(j) = 1, j is a singleton for Okj and we will associate to j the
edge ej = (0, j)kj . If d1(j) > 1, j is in bad position on Okj for some kj ∈ K;
there exists an element i ∈ N with i ≺kj j and d1(i) < d1(j) and we can
choose for i the smallest predecessor of j on Okj which satisfies this property;
we will associate to j the edge ej = (i, j)kj .
Let Ok′

j be the adjacent orders induced by ej for j ∈ N and consider the set
of vectors {b1, . . . , bn} with bj = ak′

j − akj for j = 1, . . . , n.
The following result holds:

Lemma 3. Either one of the vectors b1, . . . , bn is the null vector, or the set
{b1, . . . , bn} is triangulated.

Proof: Assume that bj = 0 for j = 1, . . . , n.
If ej = (0, j)kj , bj

j ≥ 0 and bj
i = 0 for i = j by lemma 1. As bj = 0, bj

j > 0.
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If ej = (i, j)kj , bj
j ≥ 0 but

∑n
l=1 bj

l = 0 by lemma 1 and bj
l ≤ 0 for l = j by

lemma 1, therefore bj
j > 0. As d1(i) < d1(j), i < j by rule 1.

Let l ∈ N distinct from i and j.
If l does not satisfy the relation i ≺kj l ≺kj j, bj

l = 0;
if i ≺kj l ≺kj j, bj

l ≤ 0 by lemma 1.
But d1(l) = d1(j) − 1 or d1(l) = d1(j);
if d1(l) = d1(j) − 1, then l < j (rule 1).
if d1(l) = d1(j), l is in bad position on Okj ; d2(l) ≥ α(kj) = d2(j).
If d2(l) > d2(j), then l < j (rule 2);
if d2(l) = d2(j), kj is critical for l and kl ≤ kj . If kl < kj, then l < j (rule 3).
If kl = kj , l ≺kj j, then l < j (rule 4).
So, for all possible situations, we have bj

l ≤ 0 for 1 ≤ l < j, bj
j > 0 and bj

l = 0
for j < l ≤ n; this proves our statement.
We propose now a strongly polynomial algorithm to compute λmax:

INTERSECTION ALGORITHM

Input: A normalized, monotone, submodular function f ; a direction u ∈ IRN .
Output: λmax, Tmin.

step 1. Take for initial positive basis the set K := {1, . . . , n} and compute
the initial solution (α1, . . . , αn, λ) associated to this basis.
step 2. Represent G(K) by the list of the set of out-neighbours of each
node of G(K).
step 3. If 0 is not a root, let T be the set of elements not reachable from
0, λmax = λ, Tmin = T ;
return λmax, Tmin; then stop.
else compute the distance d1(j) from 0 to each element j ∈ N .
step 4. Compute for each k ∈ K the number α(k) and for each element
j ∈ N the parameters d2(j) and d3(j) = kj .
Compute the numbers Δ1(K), Δ2(K), Δ3(K).
step 5. Implement the relabeling procedure on the set N using rules 1,2,3,4.
step 6. Find the edges ej := (i, j)kj and the vectors bj := ak′

j − akj for
j ∈ N .
step 7. If one of this vector say bj = ak′

j − akj is the null vector, set
K ′ := K ∪ {k′

j}, K := K ′ \ {kj} and go to step 2.
else set K ′ := {k′

1, . . . , k
′
n} and K1 be the set of critical indices of K; ap-

ply the procedure described in lemma 2. Let K2 ⊆ (K ∪ K ′) \ {kj} for some
kj ∈ K1 be the positive basis obtained after application of this procedure;
K := K2, go to step 2.
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It remains to analyze the complexity of this algorithm. First, we study the
running time of each step of an iteration. The most critical step is step 2
where we have to represent the graph G(K) which may have O(n3) edges.
Let L be the (n + 1) × (n + 1) adjacency matrix of G(K) where L(i, j) = 1
if j is an out-neighbour of i and L(i, j) = 0 otherwise. We start to build the
adjacency matrix Lk for each graph G({k}) (k ∈ K): first we read the sequence
Ok = [i1, . . . , im] in O(n log n) time. Then we fill the coefficients Lk(0, j) for
1 ≤ j ≤ n in O(n) time (these coefficients are associated to singletons). To get
the rest of the adjacency matrix Lk we start from the m×m adjacency matrix
associated to the ordered set: [1, . . . , m]. This matrix is upper triangular with
coefficients equal to 1 above the diagonal and 0 otherwise and can be obtained
in O(n2) time. Permuting the rows and the columns of this matrix requires
O(n2) elementary operations. The permutation which produces the matrix Lk

is obtained by sorting the elements of Ok = [i1, . . . , im] by increasing value of
the indices in time O(n log n). So the global time is O(n2). All the matrices
Lk are obtained in O(n3) time since |K| ≤ n.
Now, L(i, j) = 1 if, for some k ∈ K, Lk(i, j) = 1 and L(i, j) = 0 otherwise;
each coefficient L(i, j) is computed in O(n) time. Thus the total running time
for obtaining L is O(n3).
Using the adjacency matrix for G(K), the running time of step 3 is O(n2).
in step 4 each α(k) is computed in O(n2) and all the α(k) in O(n3).
All parameters d2(j) and d3(j) for j ∈ N can be computed in O(n2) time.
The three numbers Δ1, Δ2, Δ3 are obtained in linear time. So, the total
amount of work for step 4 is O(n3).
The relabeling procedure of step 5 can be implemented in O(n2) time: we
first have to sort the elements of N by increasing distance, then by decreasing
value of the second parameter d2(j), then by increasing value of the third
parameter kj and finally by describing the list of the ordered elements of Okj .
In step 6 we have n2 oracle calls and a time O(γn2) if γ is the time for an
oracle call. We compute each vector ak′

j in O(n2) time. Thus, the total amount
of work to implement all the parts of step 6 is O(n3 + γn2).
We already noticed in lemma 2 that step 7 can be implemented in O(n3)
time.
As a consequence, the time needed to perform all the steps of the current
iteration is O(n3 + γn2).
We need now to find the maximum number of iterations of the algorithm. Let
K and K be the positive bases in two successive iterations of the algorithm.
The analysis of the complexity of the algorithm is based on the three following
claims:

Claim. Δ1(K) ≥ Δ1(K)
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Proof: Let ej = (i, j)kj be the edge associated to j ∈ N in step 6;
Ok′

j is the adjacent order of Okj . Let (l, l′)k′
j

be an edge of G(k′
j).

If (l, l′)kj is also an edge of G(kj), d1(l′) − d1(l) ≤ 1;
if (l, l′)kj is not an edge of G(kj), there are two possible cases:
either j is a singleton of Okj and l′ = j; as d1(j) = 1, d1(l′) − d1(l) ≤ 1.
or j is an ordered element of Okj , l = j and l′ = i or i ≺kj l′ ≺kj j; but
d1(i) = d1(j) − 1 ≤ d1(l′) ≤ d1(j) and d1(l′) − d1(l) ≤ 1.
So, the relation d1(l′) − d1(l) ≤ 1 always hold. This shows that the distances
in G(K) and in G(K ∪ {k′

j}) are equal. G(K ∪ K ′) is obtained by adding
successively to G(K) all the edge-sets of the graphs G(k′

j) for all k′
j ∈ K ′.

Thus the distances are the same in G(K ∪ K ′) and in G(K). But G(K) is
obtained from G(K∪K ′) by deletion of a subset of edges. Hence the distances
can only increase in G(K) and Δ1(K) ≥ Δ1(K).

Claim. If Δ1(K) = Δ1(K), then Δ2(K) ≤ Δ2(K)

Proof: Let ej = (i, j)kj be the edge of the previous claim. As the distances
are equal in G(K) and G(K) j is in bad position on Okj but is not in bad
position on Ok′

j ; this is obvious if j is a singleton; this is also true if j is not a
singleton by our choice of i; indeed recall that i is the first element such that
d1(i) < d1(j) and i ≺kj j when we describe Okj = [i1, . . . , im] from i1 to im.
Elements distinct from j are in bad position on Ok′

j if and only if they are in
bad position on Okj . Thus α(k′

j) = α(kj) − 1.
For an element l in bad position on Okj and Ok′

j , we have d2(l) ≥ α(kj) >

α(k′
j). No upper indice k ∈ K ′ can be critical in the set K∪K ′ ; the parameters

d2(l) remain unchanged when we replace G(K) by G(K ∪ K ′). But G(K) is
obtained from G(K ∪K ′) by deletion of a subset of upper indices. Therefore,
either d2(l) remains unchanged or d2(l) strictly decreases. This proves the
claim.

Claim. If Δ1(K) = Δ1(K) and Δ2(K) = Δ2(K), then Δ3(K) < Δ3(K)

Proof: Let us continue the proof of the preceding claim. If the parameters
d2(j) are unchanged and l is in bad position on Ok′

j , d2(l) ≥ α(kj) > α(k′
j).

Hence k′
j is not critical for l and k′

j cannot be a critical indice of K. The set of
critical indices of K is included in K1; but there exists at least a critical indice
kj of K1 which does not belong to K; this implies that Δ3(K) < Δ3(K).
We can state now our main result:

Theorem 1. The running time of the Intersection Algorithm is O(n8 +γn7),
where γ is the time for an oracle call.

Proof: Define a lexicographic order among the positive bases enumer-
ated during the algorithm. We say that K ≺ K if Δ1(K) > Δ1(K) or
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Δ1(K) = Δ1(K), Δ2(K) < Δ2(K) or Δ1(K) = Δ1(K), Δ2(K) = Δ2(K),
Δ3(K) < Δ3(K). By the preceding claims these bases are totally ordered
with the lexicographic order; hence the triplets (Δ1(K), Δ2(K), Δ3(K)) are
all different.
But the value of a distance cannot exceed n and Δ1(K) ≤ n2; the value of
each second parameter cannot exceed n and Δ2(K) ≤ n2; finally Δ3(K) ≤ n.
so the total number of iterations cannot exceed n5. The total running time is
O(n8 + γn7).
Note that this is precisely the running time of the original algorithms for sub-
modular function minimization. It may be possible to improve this complexity
bound by, for instance, updating informations from an iteration to the next
iteration. It may also be possible that the number of iterations is not greater
than n4 but we did not investigate these questions.

4 The Parametric Intersection Algorithm

4.1 A parametric linear program

We consider in this section the following parametric linear program:

z(λ) = max

{∑
i∈N

xi | x ∈ P(f), x ≤ λu

}
(Pλ)

Hλ will be the polytope: {x ∈ IRN ; 0 ≤ x ≤ λu}.
A subset T ⊆ N is such that z(λ) = λu(N \ T ) + f(T ) for some λ ≥ 0 will be
called λ-tight.
The following two propositions are standard results. We give short proofs for
completeness. For a generalization of Proposition 2, see theorem 7.15 of [10].
The property given in Proposition 3 corresponds to theorem 4.6 in Megiddo
[15] and is also used in Fujishige’s algorithm [9, 10] for finding the lexico-
graphically optimal base of a polymatroid with respect to a weight vector.

Proposition 2. There exists λ0 = 0 < λ1 < . . . < λs < λs+1 = +∞ with
s ≤ n and a unique increasing family of sets T0 = ∅ ⊂ T1, . . . ,⊂ Ts = N such
that:

z(λ) = λu(N \ Tr) + f(Tr) for λr ≤ λ ≤ λr+1, r = 0, . . . , s.

Moreover Tr is the unique λ-tight set for λr < λ < λr+1, r = 0, . . . , s.

Proof: We will use the following theorem of Edmonds [6] (this theorem
gives the rank formula of a polymatroid):
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z(λ) = min(f(T ) + λu(N \ T )| T ⊆ N).

The fonction λ ∈ IR+ −→ z(λ) which is the minimum of a finite set of non-
decreasing affine functions is a piecewise-linear non-decreasing concave func-
tion. There exists λ0 = 0 < λ1 < . . . < λs and a family of sets T0, T1, . . . , Ts

such that:

z(λ) = λu(N \ Tr) + f(Tr) for λr ≤ λ ≤ λr+1, r = 0, . . . , s − 1.

For 0 ≤ λ ≤ λmax, P (f) ∩ Hλ = Hλ; x = λu is the solution of (Pλ) and
z(λ) = λu(N). For λ > λmax, λu /∈ P (f) and λu(N) > z(λ). This implies
that λ0 = 0, λ1 = λmax, T0 = ∅.
For λ large enough, Hλ ∩ P (f) = P (f) and z(λ) = f(N); so z(λ) = f(N) for
λ ≥ λs and Ts = N .
For λ1 ≤ λ ≤ λs, let A and B be two λ-tight sets. By the submodularity of f ,
A∩B and A∪B are also λ-tight sets; hence we can assume that A (resp. B) is
the unique λ-tight set of minimum (resp. maximum) cardinality and A ⊆ B.
If A ⊂ B, u(N \ B) < u(N \ A) since u > 0; by the concavity and the
continuity of z(λ), there exists ε > 0 such that z(λ′) = f(A) + λ′u(N \ A) if
λ − ε ≤ λ′ ≤ λ and z(λ′) = f(B) + λ′u(N \ B) if λ ≤ λ′ ≤ λ + ε. Hence z(λ)
is not a linear function in any neighborhood of λ; thus λ ∈ {λ1, . . . , λs}.
If λ = λr for 1 ≤ r ≤ s, Tr−1 = A ⊂ B = Tr.
Finally r ≤ n since the number of sets Tr cannot exceed n. This finishes the
proof.
Let xr be the solution of (Pλr ) and define a new direction:

ur

{
ur

i = 0 if i ∈ Tr

ur
i = ui if i ∈ N \ Tr

Consider the following half-line:

Δur = {x ∈ IRN | x = xr + (λ − λr)ur, λ ≥ λr}.
We want to find now the extremities of the closed interval P (f) ∩ Δur .

Proposition 3. λr+1 = max{λ | x ∈ P (f), x = xr + (λ − λr)ur, λ ≥ λr}.
Proof: If x = xr + (λ − λr)ur, x(N) = xr(N) + (λ − λr)u(N \ T ).
But xr(N) = z(λr) = f(Tr) + λru(N \ Tr).
Therefore x(N) = f(Tr) + λu(N \ Tr).
If x is the solution of the linear program defined in the statement of proposition
3, there exists a tight set S ⊆ N for x which contains at least one element
i ∈ S \ Tr. But S ∪ Tr which strictly contains Tr is also tight for x by the
submodularity of f and x(N) = f(S ∪ Tr) + λu(N \ (S ∪ Tr)).
As x ∈ Hλ, x is solution of Pλ. But we know by proposition 2 that Tr is
the largest λr-tight set and that Tr is the unique λ-tight set in the interval
λr < λ < λr+1. Thus the set S ∪ Tr can exist only if λ = λr+1.
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4.2 The Parametric Intersection Algorithm

Some of the ideas of our Parametric Intersection Algorithm appear in Fujishige
[10]. We will study the case when the Intersection Algorithm returns λ1 =
λmax and the set Tmin. The case λr for r > 1 is similar and will not be
treated. x1 = λ1u is the solution of Pλ1 ; (α1

k, k ∈ K; λ1) is the solution
of L(K) where K is the last positive basis K returned by the Intersection
Algorithm:

L(K)

⎧⎨
⎩

αk ≥ 0 for k ∈ K

λu =
∑

k∈K αkak∑
k∈K αk = 1

and T1 is the set of nodes of G(K) not reachable from 0. Instead of stopping
as in the Intersection Algorithm, we could try to use these informations in
order to find the second value λ2. By proposition 3, λ2 is the value of the
linear program:

λ2 = max{λ | x ∈ P (f), x = λ1u + (λ − λ1)u1, λ ≥ λ1}

where u1 is the new direction defined as in proposition 3. So our original
system L(K) is changed into a different system:

L1(K)

⎧⎨
⎩

αk ≥ 0 for k ∈ K

λ1u + (λ − λ1)u1 =
∑

k∈K αkak∑
k∈K αk = 1

Since λ1 is fixed, the variables of L1(K) are (αk, k ∈ K; λ) and (α1
k, k ∈

K; λ = 0) is the unique solution of L1(K).
T1 is the set of elements of G(K) not reachable from 0 and N1 = N \T1 is the
set of elements reachable from 0; we will set |T1| = l ≥ 1. If T1 = N , λ1 = λs

and we stop. So, we will assume that l < n. d1(i) is the distance from 0 to i

for i ∈ N1. We observed in the proof of Proposition 1 that the elements of T1

are the first elements of the sequence describing Ok for each k ∈ K: if

Ok = [i1, . . . , il, il+1, . . . , im]

T1 = {i1, . . . , il}. To maintain this property throughout the next iterations
of the algorithm, we assign to each element i of T1 a first parameter d1(i)
equal to n: if j ∈ N , d1(i) ≥ d1(j) and i will never be in bad position for
any order Ok in the forthcoming iterations . The numbers α(k) for k ∈ K

are computed as in the Intersection Algorithm. Note however that no upper
indice k is critical if i ∈ T1, so we will set d2(i) = 0 for i ∈ T1. The third
parameter will play no role for elements in T1 and will be discarded.
Let T1 = {n − l + 1, . . . , n}. The elements of T1 will never be affected by the
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relabeling procedure because of the first rule of this procedure. Next, we will
find the edges ej := (i, j)kj and the vectors bj := ak′

j − akj as in step 6. How-
ever these edges exist only for j ∈ N1 since no indice k is critical for j ∈ T1.
Thus there exists |N1| edges ej and |N1| vectors bj . The elements of T1 remain
in the first position in any new order Ok′

j introduced in step 6. Since bj
i = 0

for i ∈ T1 and j = 1, . . . , n − l the linear system μ1b1 + . . . + μnbn−l = u1

has a non-negative solution. We can terminate step 7 as in the Intersection
Algorithm.

PARAMETRIC INTERSECTION ALGORITHM

Input: A normalized, monotone, submodular function f ; a direction u ∈ IRN .
Output: s ≥ 1; λ0, . . . , λs ; T0, . . . , Ts.

step 1. Take for initial positive basis K := {1, . . . , n} and compute the
initial solution (α1, . . . , αn, λ) associated to this basis. Set r = 0, λ0 = 0,
T0 = ∅.
step 2. Represent G(K) by the list of the set of out-neighbours of each
node of G(K).
step 3. If 0 is not a root, let T be the set of elements not reachable from
0; compute the distance d1(j) from 0 to each element j ∈ N \ T .
Set d1(j) = n and d2(j) = 0 for j ∈ T .
if Tr = T go to step 4
else Tr ⊂ T ; set r := r + 1, Tr := T , λr := λ,
update u ∈ IRN : ui := 0 if i ∈ T . If T = N stop.
else go to step 4.
step 4. Compute for each k ∈ K α(k) and for each element j ∈ N \T the
parameters d2(j) and kj . Compute the numbers Δ1(K), Δ2(K), Δ3(K).
step 5. Implement the relabeling procedure on the set N \ T with rules
1,2,3,4.
step 6. Find the edges ej := (i, j)kj and the vectors bj := ak′

j − akj for
j ∈ N \ T .
step 7. If one of this vector say bj = ak′

j − akj is the null vector, set
K ′ := K ∪ {k′

j}, K := K ′ \ {kj} and go to step 2.
else set K ′ := {k′

1, . . . , k
′
n} and let K1 be the set of critical indices of K;

apply the procedure described in lemma 2. Let K2 ⊆ (K∪K ′)\{kj} for some
kj ∈ K1 be the positive basis obtained after application of this procedure;
K := K2 and go to step 2.

At the first iteration of the algorithm, all the elements of N are singletons
and K1 = K. Thus, the triplet associated to the initial basis is (n, (n − 1) ×
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n, n). At the final iteration no element is reachable from 0 and the triplet
is (n2, 0, 0). As in the proof of the Intersection Algorithm, all the bases are
distinct and the number of iterations cannot exceed n5; the complexity of
the Parametric Intersection Algorithm is O(n8 + γn7). Let us give now two
applications of this algorithm.

4.3 Strength of a polymatroid

Consider the last discontinuity λs of z(λ):
z(λ) = f(N) = f(N \ Ts−1) + λsu(Ts−1).
λs = f(N)−f(N\Ts−1)

u(Ts−1)
.

If (T, N \ T ) is a partition of N with f(N) > f(N \ T ),
f(N) = f(N \ Ts−1) + λsu(Ts−1) ≤ f(N \ T ) + λsu(T ) and it is easy to see
that:
λs = f(N)−f(N\Ts−1)

u(Ts−1)
≥ f(N)−f(N\T )

u(T ) .
If we set
σ(f, u) = min{ u(T )

f(N)−f(N\T ) for all T ⊂ N ; such that f(N) > f(N \ T )},
σ(f, u) = 1

λs
.

By analogy with graphs, we call σ(f, u) the strength of the polymatroid P (f).
If f is the rank function of a graphic matroid, σ(f, u) is precisely the strength
of a network.

4.4 Minimization of a submodular function

Let f be a submodular set function defined on N . f may not be monotone
or normalized. The submodular function minimization problem consists in
finding a subset of N which realizes the minimum of f . We will prove that
this subset can be returned by the Parametric Intersection Algorithm for a
well chosen value of the parameter λ.
Let us first make (n + 2) oracle calls: f(i) for i ∈ N , f(N) and f(∅).
Set δ = maxi∈N f(i) and δ0 = min(0, f(N)).

Lemma 4. Let λ = 2(nδ − δ0) + 1. Define f by f(T ) = f(T ) + λ|T | − f(∅),
f is normalized, monotone and submodular.

Proof: Clearly f is normalized and submodular.
Let T ⊆ N ; By the submodularity of f , f(T ) ≤ ∑

i∈N f({i}) ≤ nδ ≤ nδ − δ0.

As δ0 ≤ f(N) ≤ nδ, λ > 0.
f(T ) ≥ f(N) − f(N \ T ) ≥ δ0 − nδ.
If S and T are two subsets of N , −λ ≤ f(S) − f(T ) ≤ λ.
Assume that S ⊂ T :
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f(T ) − f(S) ≥ f(T ) − f(S) + λ ≥ 0 and f is monotone.
Let u be the vector with all components equal to 1. If S ⊆ N is λ-tight,

z(λ) = f(S) + λ|N \ S| = min(f(T ) + λ|N \ T | for all T ⊆ N),

f(S)+λ|S|−f(∅)+λ|N \S| = min(f(T )+λ|T |−f(∅)+λ|N \T | for all T ⊆ N).
This proves that f(S) = min(f(T )| T ⊆ N).
We just proved the following result:

Theorem 2. The Parametric Intersection Algorithm solves the submodular
function minimization problem and simultaneously computes the strength of
the polymatroid in O(n8 + γn7) time.

5 Conclusion

We were motivated in the study of the intersection of a polymatroid and a
half-line by problems in the Telecommunication industry, suggested by Jérôme
Galtier and Alexandre Laugier, where the strength of a network is a useful
parameter; by choosing randomly the direction u according to a uniform dis-
tribution law it was possible to show that the average number of iterations for
the Intersection Algorithm is O(n); in a forthcoming paper, we will prove that
the theoretical average complexity of a very simple algorithm for solving the
Intersection Problem is O(n5), confirming the good practical bound observed
by numerical tests.
The complexity of the Intersection Problem of a polytope with a straight
line is trivial if the inequalities describing the polytope are explicitly given
as input, by enumeration of these inequalities; if the polytope is given by
its extreme points, the existence of a combinatorial algorithm to solve the
Intersection Problem is a difficult open problem since it is possible to show
that the existence of such an algorithm would answer positively the following
question: does there exist a combinatorial, ”simplex-like” algorithm for linear
programming?
Finally the remaining case is when the polytope and the straight line are em-
bedded in a vector space IRn with the number of inequalities describing the
polytope not polynomial in n. The question is to find a strongly polynomial
algorithm in n for solving the Intersection Problem. Of course a condition
should be satisfied: the optimization problem on this polytope has to be solv-
able in polynomial time thanks to the ellipsoid method for instance. So we may
hope that there exists strongly polynomial combinatorial algorithms when we
replace the polymatroid by the matching polytope, the branching polytope,
or the stable set polytope of a perfect graph. All these questions seem to be
opened.
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