Skip to main content
  • 2890 Accesses

Summary

The theory of principal partitions of discrete systems such as graphs, matrices, matroids, and submodular systems have been developed since 1967. In the early stage of the developments during 1967–75 the principal partition was considered as a decomposition of a discrete system into its components together with a partially ordered structure of the set of the components. It then turned out that such a decomposition with a partial order on it arises from the submodularity structure pertinent to the system and it has been realized that the principal partitions are closely related to resource allocation problems with submodular structures, which are kind of dual problems.

The aim of this paper is to give an overview of the developments in the theory of principal partitions and some recent extensions with special emphasis on its relation to associated resource allocation problems in order to make it better known to researchers in combinatorial optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baïou, M., Barahona, F., Mahjoub, A.R.: Separation of partition inequalities. Math. Oper. Res. 25, 243–254 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Barahona, F., Kerivin, H.: Separation of partition inequalities with terminals. Discrete Optim. 1, 129–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Birkhoff, G.: Lattice Theory. American Mathematical Colloquium Publications, vol. 25, 3rd edn. Am. Math. Soc., Providence (1967)

    MATH  Google Scholar 

  • Brumelle, S., Granot, D., Liu, L.: Ordered optimal solutions and parametric minimum cut problems. Discrete Optim. 2, 123–134 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Bruno, J., Weinberg, L.: The principal minors of a matroid. Linear Algebra Appl. 4, 17–54 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Cunningham, W.H.: Optimal attack and reinforcement of a network. J. Assoc. Comput. Mach. 32, 549–561 (1985)

    MATH  MathSciNet  Google Scholar 

  • Desai, M.P., Narayanan, H., Patkar, S.B.: The realization of finite state machines by decomposition and the principal lattice of partitions of a submodular function. Discrete Appl. Math. 131, 299–310 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Dutta, B.: The egalitarian solution and reduced game properties in convex games. Int. J. Game Theory 19, 153–169 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Dutta, B., Ray, D.: A concept of egalitarianism under participation constraints. Econometrica 57, 615–635 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res. Natl. Bur. Stand. B Math. Sci. 69, 67–72 (1965a)

    MATH  MathSciNet  Google Scholar 

  • Edmonds, J.: Lehman’s switching game and a theorem of Tutte and Nash-Williams. J. Res. Natl. Bur. Stand. B Math. Sci. 69, 73–77 (1965b)

    MATH  MathSciNet  Google Scholar 

  • Edmonds, J.: Matroid intersection. Ann. Discrete Math. 4, 39–49 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970). Also in: Combinatorial Optimization—Eureka, You Shrink! Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Lecture Notes in Computer Science, vol. 2570, pp. 11–26. Springer, Berlin (2003)

    Google Scholar 

  • Edmonds, J., Fulkerson, D.R.: Transversals and matroid partition. J. Res. Natl. Bur. Stand. B Math. Sci. 69, 147–157 (1965)

    MATH  MathSciNet  Google Scholar 

  • Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ric. Oper. 53, 3–44 (1990)

    Google Scholar 

  • Federguen, A., Groenevelt, H.: The greedy procedure for resource allocation problems—necessary and sufficient conditions for optimality. Oper. Res. 34, 909–918 (1986)

    Article  MathSciNet  Google Scholar 

  • Fleischer, L., Iwata, S.: A push-relabel framework for submodular function minimization and applications to parametric optimization. Discrete Appl. Math. 131, 311–322 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Frank, A.: Applications of submodular functions. In: Walker, K. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 187, pp. 85–136. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  • Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5, 186–196 (1980a)

    Article  MATH  MathSciNet  Google Scholar 

  • Fujishige, S.: Principal structures of submodular systems. Discrete Appl. Math. 2, 77–79 (1980b)

    Article  MATH  MathSciNet  Google Scholar 

  • Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics, vol. 58. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  • Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Fujishige, S., Nagano, K.: A structure theory for the parametric submodular intersection problem. Preprint Series RIMS-1629, RIMS, Kyoto University, March 2008

    Google Scholar 

  • Fujishige, S., Tamura, A.: A two-sided discrete-concave market with possibly bounded side payments: an approach by discrete convex analysis. Math. Oper. Res. 32, 136–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Fujishige, S., Hayashi, T., Isotani, S.: The minimum-norm-point algorithm applied to submodular function minimization and linear programming. RIMS preprints series No. 1571, Research Institute for Mathematical Sciences, Kyoto University, September 2006

    Google Scholar 

  • Fujishige, S., Hayashi, T., Nagano, K.: Minimizing discrete convex functions with inequality constraints. Preprint Series RIMS-1622, RIMS, Kyoto University, March 2008

    Google Scholar 

  • Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18, 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Granot, F., Veinott, A.F. Jr.: Substitutes, complements and ripples in network flows. Math. Oper. Res. 10, 471–497 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Groenevelt, H.: Two algorithms for maximizing a separable concave function over a polymatroid feasible region. Eur. J. Oper. Res. 54, 227–236 (1991)

    Article  MATH  Google Scholar 

  • Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)

    MATH  Google Scholar 

  • Hochbaum, D.S., Hong, S.P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69, 269–309 (1995)

    MathSciNet  Google Scholar 

  • Hokari, T.: Monotone-path Dutta-Ray solution on convex games. Soc. Choice Welf. 19, 825–844 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Hokari, T., van Gellekom, A.: Population monotonicity and consistency in convex games: Some logical relations. Int. J. Game Theory 31, 593–607 (2002)

    Article  MATH  Google Scholar 

  • Iri, M.: A min-max theorem for the ranks and term-ranks of a class of matrices—an algebraic approach to the problem of the topological degrees of freedom of a network. Trans. Inst. Electron. Commun. Eng. Jpn., Sect. A 51, 180–187 (1968) (in Japanese)

    MathSciNet  Google Scholar 

  • Iri, M.: The maximum-rank minimum-term-rank theorem for the pivotal transforms of a matrix. Linear Algebra Appl. 2, 427–446 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  • Iri, M.: A review of recent work in Japan on principal partitions of matroids and their applications. Ann. New York Acad. Sci. 319, 306–319 (1979)

    Article  MathSciNet  Google Scholar 

  • Iri, M.: Applications of matroid theory. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming—The State of the Art, pp. 158–201. Springer, Berlin (1983)

    Google Scholar 

  • Iri, M.: Structural theory for the combinatorial systems characterized by submodular functions. In: Pulleyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 197–219. Academic Press, Toronto (1984)

    Google Scholar 

  • Iwata, S.: Principal structure of submodular systems and Hitchcock-type independent flows. Combinatorica 15, 515–532 (1996)

    Article  MathSciNet  Google Scholar 

  • Iwata, S.: A fully combinatorial algorithm for submodular function minimization. J. Comb. Theory Ser. B 84, 203–212 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32, 833–840 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Iwata, S.: Submodular function minimization. Math. Program. Ser. B 112, 45–64 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Iwata, S., Murota, K.: A theorem on the principal structure for independent matchings. Discrete Appl. Math. 61, 229–244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Iwata, S., Murota, K.: Horizontal principal structure of layered mixed matrices—Decomposition of discrete systems by design-variable selections. SIAM J. Discrete Math. 9, 71–86 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Iwata, S., Murota, K., Shigeno, M.: A fast submodular intersection algorithm for strong map sequences. Math. Oper. Res. 22, 803–813 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. Assoc. Comput. Mach. 48, 761–777 (2001)

    MATH  MathSciNet  Google Scholar 

  • Jain, K., Vazirani, V.V.: Equitable cost allocations via primal-dual-type algorithms. In: Proceedings of STOC’02 (May 19–21, 2002, Montreal, Quebec, Canada), pp. 313–321 (2002)

    Google Scholar 

  • Jain, K., Vazirani, V.V.: Eisenberg-Gale markets: algorithms and structural properties. In: Proceedings of STOC’07 (June 11–13, 2007, San Diego, California, USA), pp. 364–373 (2007)

    Google Scholar 

  • Kishi, G., Kajitani, Y.: Maximally distant trees in a linear graphs. Trans. Inst. Electron. Commun. Eng. Jpn., Sect. A 51, 196–203 (1968) (in Japanese). See also: On maximally distinct trees. In: Proceedings of the Fifth Annual Allerton Conference on Circuit and System Theory, pp. 635–643 (1967)

    MathSciNet  Google Scholar 

  • Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55, 270–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming—The State of the Art, pp. 235–257. Springer, Berlin (1983)

    Google Scholar 

  • McCormick, S.T.: Submodular function minimization. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Discrete Optimization. Handbooks in Operations Research, vol. 12, pp. 321–391. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math. Program. 7, 97–107 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  • Megiddo, N.: A good algorithm for lexicographically optimal flows in multi-terminal networks. Bull. Am. Math. Soc. 83, 407–409 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Milgrom, P., Shannon, C.: Monotone comparative statics. Econometrica 62, 157–180 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Murota, K.: Menger-decomposition of a graph and its application to the structural analysis of a large-scale system of equations. Discrete Appl. Math. 17, 107–134 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Murota, K.: Note on the universal bases of a pair of polymatroids. J. Oper. Res. Soc. Japan 31, 565–572 (1988)

    MATH  MathSciNet  Google Scholar 

  • Murota, K.: Principal structure of layered mixed matrix. Discrete Appl. Math. 27, 221–234 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    MATH  MathSciNet  Google Scholar 

  • Murota, K.: Matrices and Matroids for Systems Analysis. Algorithms and Combinatorics, vol. 20. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Murota, K.: Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics and Applications, vol. 10. SIAM, Philadelphia (2003a)

    MATH  Google Scholar 

  • Murota, K.: On steepest descent algorithms for discrete convex functions. SIAM J. Optim. 14, 699–707 (2003b)

    Article  MATH  MathSciNet  Google Scholar 

  • Murota, K.: Recent developments in discrete convex analysis. A chapter in this book (2008)

    Google Scholar 

  • Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Murota, K., Iri, M., Nakamura, M.: Combinatorial canonical form of layered mixed matrices and its application to block-triangularization of systems of equations. SIAM J. Algebr. Discrete Methods 8, 123–149 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Nagano, K.: On convex minimization over base polytopes. In: Proceedings of the 12th IPCO. LNCS, vol. 4513, pp. 252–266. Springer, Berlin (2007a)

    Google Scholar 

  • Nagano, K.: A faster parametric submodular function minimization algorithm and applications. Mathematical Engineering Technical Reports, METR 2007-43, Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, July 2007b

    Google Scholar 

  • Nakamura, M.: Structural theorems for submodular functions, polymatroids and polymatroid intersections. Graphs Combinatorics 4, 257–284 (1988)

    Article  MATH  Google Scholar 

  • Nakamura, M., Iri, M.: A structural theory for submodular functions, polymatroids and polymatroid intersections. Research Memorandum RMI 81-06, Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering, University of Tokyo, August 1981. See also (Iri 1984; Nakamura 1988)

    Google Scholar 

  • Narayanan, H.: Theory of matroids and network analysis. Ph.D. Thesis, Department of Electrical Engineering, Indian Institute of Technology, Bombay, February 1974

    Google Scholar 

  • Narayanan, H.: Submodular Functions and Electrical Networks. Annals of Discrete Mathematics, vol. 54. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

  • Narayanan, H., Vartak, M.N.: An elementary approach to the principal partition of a matroid. Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 64, 227–234 (1981)

    Google Scholar 

  • Nash-Williams, C.St.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  • Ohtsuki, T., Ishizaki, Y., Watanabe, H.: Network analysis and topological degrees of freedom. Trans. Inst. Electron. Commun. Eng. Jpn., Sect. A 51, 238–245 (1968) (in Japanese)

    MathSciNet  Google Scholar 

  • Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. In: Proceedings of the 12th IPCO. LNCS, vol. 4513, pp. 240–251. Springer, Berlin (2007). Math. Program. (to appear)

    Google Scholar 

  • Ozawa, T.: Common trees and partition of two-graphs. Trans. Inst. Electron. Commun. Eng. Jpn., Sect. A 57, 383–390 (1974) (in Japanese)

    Google Scholar 

  • Patkar, S.B., Narayanan, H.: Improving graph partitions using submodular functions. Discrete Appl. Math. 131, 535–553 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Picard, J.C., Queyranne, M.: On the structure of all minimum cuts in a network and applications. Math. Program. Study 13, 8–16 (1980)

    MATH  MathSciNet  Google Scholar 

  • Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program. 58, 263–285 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Rado, R.: A theorem on independence relations. Q. J. Math. 13, 83–89 (1942)

    Article  MathSciNet  Google Scholar 

  • Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory, Ser. B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Shanthikumar, J.G., Yao, D.D.: Multiclass queueing systems: polymatroidal structure and optimal scheduling control. Oper. Res. 40, S293–S299 (1992)

    MathSciNet  Google Scholar 

  • Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1, 11–26 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Studený, M.: Probabilistic Conditional Independence Structures. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Tomizawa, N.: Strongly irreducible matroids and principal partition of a matroid into strongly irreducible minors. Trans. Inst. Electron. Commun. Eng. Jpn., Sect. A 59, 83–91 (1976) (in Japanese)

    MathSciNet  Google Scholar 

  • Tomizawa, N., Fujishige, S.: Historical survey of extensions of the concept of principal partition and their unifying generalization to hypermatroids. Systems Science Research Report No. 5, Department of Systems Science, Tokyo Institute of Technology, April 1982; also its abridgment appeared in Proceedings of the 1982 International Symposium on Circuits and Systems (Rome, May 10–12, 1982), pp. 142–145

    Google Scholar 

  • Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26, 305–321 (1978)

    MATH  MathSciNet  Google Scholar 

  • Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)

    Google Scholar 

  • Tsuchiya, T., Ohtsuki, T., Ishizaki, Y., Watanabe, H., Kajitani, Y., Kishi, G.: Topological degrees of freedom of electrical networks. In: Proceedings of the Fifth Annual Allerton Conference on Circuit and System Theory (October 4–6, 1967), pp. 644–653

    Google Scholar 

  • Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  • Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Yeung, R.W.: A First Course in Information Theory. Springer, Berlin (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujishige, S. (2009). Theory of Principal Partitions Revisited. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_7

Download citation

Publish with us

Policies and ethics