Summary
Many real-world problems require graphs of such large size that polynomial time algorithms are too costly as soon as their runtime is superlinear. Examples include problems in VLSI-design or problems in bioinformatics. For such problems the question arises: What is the best solution that can be obtained in linear time? We survey linear time approximation algorithms for some classical problems from combinatorial optimization, e.g. matchings and branchings.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Althaus, E., Mehlhorn, K.: Maximum network flow with floating point arithmetic. Inf. Process. Lett. 66(3), 109ā113 (1998)
Avis, D.: Two greedy heuristics for the weighted matching problem. Congr. Numer. XXI, 65ā76 (1978). Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1978)
Bast, H., Mehlhorn, K., SchƤfer, G., Tamaki, H.: Matching algorithms are fast in sparse random graphs. Theory Comput. Syst. 39(1), 3ā14 (2006)
Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. U.S.A. 43(9), 842ā844 (1957)
Blum, N.: A new approach to maximum matching in general graphs. In: Proc. of 17th ICALP (1990). Lecture Notes in Computer Science, vol. 443, pp. 586ā597. Springer, Berlin (1990)
Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed network. In: Avi Itzhak, B. (ed.) Developments in Operations Research, Proceedings of the Third Annual Israel Conference on Operations Research, July 1969, vol. 1, pp. 29ā44. Gordon and Breach, New York (1971). Paper 1-2
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305ā1317 (1996)
Chu, Y.-J., Liu, T.-H.: On the shortest arborescence of a directed graph. Sci. Sin. 14(10), 1396ā1400 (1965)
Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11(2), 138ā148 (1999)
Drake, D.E., Hougardy, S.: Linear time local improvements for weighted matchings in graphs. In: Jansen, K. et al. (eds.) International Workshop on Experimental and Efficient Algorithms (WEA) 2003. Lecture Notes in Computer Science, vol. 2647, pp. 107ā119. Springer, Berlin (2003a)
Drake, D.E., Hougardy, S.: A simple approximation algorithm for the weighted matching problem. Inf. Process. Lett. 85(4), 211ā213 (2003b)
Drake Vinkemeier, D.E., Hougardy, S.: A linear-time approximation algorithm for weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107ā122 (2005)
Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449ā467 (1965)
Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand., B Math. Math. Phys. 71(4), 233ā240 (1967)
Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci. 51(2), 261ā272 (1995)
Fischer, T., Goldberg, A.V., Haglin, D.J., Plotkin, S.: Approximating matchings in parallel. Inf. Process. Lett. 46(3), 115ā118 (1993)
Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399ā404 (1956)
Frank, A.: On Kuhnās Hungarian methodāa tribute from Hungary. Nav. Res. Logist. 52(1), 2ā5 (2005)
Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows. VIII. A revised theory of phase-ordered algorithms and the \(O(\sqrt{n}m\log (n^{2}/m)/\log n)\) bound for the nonbipartite cardinality matching problem. Networks 41(3), 137ā142 (2003)
Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: STOC ā83: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 448ā456. ACM Press, New York (1983)
Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: SODA ā90: Proceedings of the First Annual ACMāSIAM Symposium on Discrete Algorithms, pp. 434ā443. SIAM, Philadelphia (1990)
Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. J. Algorithms 9(3), 411ā417 (1988)
Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph-matching problems. J. Assoc. Comput. Mach. 38(4), 815ā853 (1991)
Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(2), 109ā122 (1986)
Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings. Math. Program. 100(3), 537ā568 (2004)
Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid problems. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCSā06), pp. 531ā542. IEEE Computer Society, Washington (2006)
Hassin, R., Lahav (Haddad), S.: Maximizing the number of unused colors in the vertex coloring problem. Inf. Process. Lett. 52(2), 87ā90 (1994)
Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225ā231 (1973)
Jenkyns, T.A.: The efficacy of the greedy algorithm. Congr. Numer. 17, 341ā350 (1976)
Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96ā129 (1998)
Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann. Discrete Math. 2, 65ā74 (1978)
Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83ā97 (1955)
Mehlhorn, K., SchƤfer, G.: Implementation of O(nmlogān) weighted matchings in general graphs: the power of data structures. ACM J. Exp. Algorithmics 7, 4 (2002)
Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. Lecture Notes in Computer Science, vol. 4168, pp. 528ā539. Springer, Berlin (2006)
Micali, S., Vazirani, V.V.: An \(O(\sqrt {|v|}\cdot |E|)\) algorithm for finding maximum matching in general graphs. In: Proc. of 21st Annual Symposium on Foundations of Computer Science (21st FOCS, Syracuse, New York, 1980), pp. 17ā27 (1980)
Motwani, R.: Average-case analysis of algorithms for matchings and related problems. J. Assoc. Comput. Mach. 41(6), 1329ā1356 (1994)
Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCSā04), pp. 248ā255. IEEE Computer Society, Washington (2004)
Petersen, J.: Die Theorie der regulƤren Graphs. Acta Math. 15(1), 193ā220 (1891)
Pettie, S., Sanders, P.: A simpler linear time 2/3āε approximation for maximum weight matching. Inf. Process. Lett. 91(6), 271ā276 (2004)
Preis, R.: Linear time \(\frac{1}{2}\) -approximation algorithm for maximum weighted matching in general graphs. In: Meinel, C., Tison, S. (eds.) Symposium on Theoretical Aspects in Computer Science (STACS). Lecture Notes in Computer Science, vol. 1563, pp. 259ā269. Springer, Berlin (1999)
Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf. Process. Lett. 12(2), 89ā92 (1981)
Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{V}E)\) general graph maximum matching algorithm. Combinatorica 14(1), 71ā109 (1994)
Ziegler, V.: Approximating optimum branchings in linear time. Technical report, Humboldt-Universität zu Berlin, Institut für Informatik (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hougardy, S. (2009). Linear Time Approximation Algorithms for Degree Constrained Subgraph Problems. In: Cook, W., LovƔsz, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-76796-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76795-4
Online ISBN: 978-3-540-76796-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)