Summary
Linear multivariate regression tools developed on the basis of the traditional statistical theory are naturally suitable for high-dimensional data analysis. In this article, these methods are applied to microarray gene expression data. At first, a short introduction to dimension reduction techniques in both static and dynamic cases is given. After that, two examples, yeast cell response to environmental changes and expression during the cell cycle, are used to demonstrate the presented subspace identification method for data-based modeling of genome dynamics. The results show that the method is able to capture the relevant, higher level dynamical properties of the whole genome and can thus provide useful tools for intelligent data analysis. Especially the simplicity of the model structures leads to an easy interpretation of the obtained results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basilevsky A (1994) Statistical factor analysis and related methods - theory and applications. John Wiley & Sons
Brown MPS, Grundy WN, Lin D, Christianini N, Sugnet CW, Furey TS, Ares M Jr., Haussler D (2000) Proc Natl Acad Sci USA 97(1):262ā267
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Mol Biol Cell 12:323ā337
Cho RJ, Campbell MJ, Winzeler EA, Stenmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) Molecular Cell 2:65ā73
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Mol Biol Cell 11:4241ā4257
Grewal MS, Andrews AP (1993) Kalman filtering theory and practice. Prentice Hall
Haavisto O, Hyƶtyniemi H (2006) Neocybernetic modeling of a biological cell. In: Honkela T, Raiko T, Kortela J, Valpola H (eds) Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006) 209ā216
Haavisto O, Hyƶtyniemi H, Roos C (2007) Journal of Bioinformatics and Computational Biology 5(1):31ā46
Holter NS, Maritan A, Cieplak M, Fedoroff NV, Banava JR (2001) Proc Natl Acad Sci USA 98(4):1693ā1698
Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV (2000) Proc Natl Acad Sci USA 97(15):8409ā8414
Hyƶtyniemi H (2001) Multivariate regression ā techniques and tools. Tech. Rep. 125, Helsinki University of Technology, Control Engineering Laboratory
Hyƶtyniemi H (2006) Neocybernetics in biological systems. Tech. Rep. 151, Helsinki University of Technology, Control Engineering Laboratory
Liang Y, Kelemen A (2005) International Journal of Bioinformatics Research and Applications 1(4):399ā413
Ljung L (1999) System identification, theory for the user, second ed. Prentice Hall PTR
Maraziotis I, Dragomir A, Bezerianos A (2005) Gene Networks inference from expression data using a recurrent neuro-fuzzy approach. In: Proceedings of the IEEE 27th Annual Conference of the Engineering in Medicine and Biology Society 4834ā4837
Ong IM, Glasner JD, Page D (2002) Bioinformatics 18(Suppl. 1):S241āS248
Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004) Bioinformatics 20(9):1361ā1372
Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: Application to sporulation time series. In: Proc of the fifth Pac Symp Biocomput 5:452ā463
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Mol Biol Cell 9:3273ā3297
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Bioinformatics 17(6):520ā525
Van Overschee P, De Moor B (1996) Subspace Identification for Linear Systems. Kluwer Academic Publisher, Boston, Massachusetts
Wu F-X, Zhang WJ, Kusalik AJ (2004) Journal of Biological Systems 12(4):483ā500
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Haavisto, O., Hyƶtyniemi, H. (2008). Multivariate Regression Applied to Gene Expression Dynamics. In: Kelemen, A., Abraham, A., Chen, Y. (eds) Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76803-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-76803-6_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76802-9
Online ISBN: 978-3-540-76803-6
eBook Packages: EngineeringEngineering (R0)