Summary
In a microarray dataset, the expression profiles of a large amount of genes are recorded. Identifying the influential genes from these genes is one of main research topics of bioinformatics and has drawn many attentions. In this chapter, we briefly overview the existing gene selection approaches and summarize the main challenges of gene selection. After that, we detail the strategies to address these challenges. Also, using a typical gene selection model as example, we show the implementation of these strategies and evaluate their contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ekins R, Chu FW (1999) Trends in Biotechnology 17:217–218.
Dudoit S, Fridlyand J, Speed TP (2002) Journal of the American Statistical Association 97(457):77–87.
Golub TR, Slonim DK, Tamayo P, et al. (1999) Science 286:531–537.
Li W, Yang Y (2002) How Many Genes Are Needed for a Discriminant Microarray Data Analysis? In: Lin SM, Johnson KF (eds) Methods of Microarray Data Analysis. Kluwer Academic, London.
Singh D, Febbo PG, Ross K, et al. (2002) Cancer Cell 1(2):203–209.
Liu H, Motoda H (1998) Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, London.
Molina LC, Belanche L, Nebot A (2002) Feature Selection Algorithms: a Survey and Experimental Evaluation, Departament de Llenguatges i Sistemes Informtics, Universitat Politcnica de Catalunya, available at: http://www.lsi.upc.es/dept/techreps /html/R02-62.html, Technical Report.
Liu X, Krishnan A, Mondry A (2005) An Entropy-based gene selection method for cancer classification using microarray data, BMC Bioinformatics, 6:76.
Shah SC, Kusiak A (2004) Intelligence in Medicine 31(3):183–196.
Umpai TJ, Aitken S (2005) BMC Bioinformatics 6(148):1:11.
Xing EP, Jordan MI, Karp M (2001) Feature selection for high-dimensional genomic microarray data. In: Carla E. Brodley, Andrea Pohoreckyj Danyluk (eds) Proc. 18th Intl. Conf. On Machine Learning. San Francisco, Morgan Kaufmann.
Lee KE, Sha N, Dougherty ER, et al. (2003) Bioinformatics 19(1):90–97.
Guyon I, Weston J, Barnhill S, et al. (2002) Machine Learning 46:389–422.
Yeung K, Bumgarner RE, Raftery AE (2005) Bioinformatics 21(10):2394–2402.
Huang D, Chow TWS (2005) IEEE Trans. Circuits and Systems 52(4):785–793.
Pudil P, Novovicova J, Kittler J (1994) Pattern Recognition Letter 15:1119–1125.
Al-Ani A, Deriche M (2000) Optimal feature selection using information maximisation: case of biomedical data. In: Proc. of the 2000 IEEE Signal Processing Society Workshop, vol. 2.
Gui J, Li H (2005) Bioinformatics 21(13):3001–3008.
Zhou X, Wang X, Dougherty ER (2004) Journal of Biological Systems 12(3):371–386.
Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University Press, New York.
Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning. Springe, Berlin Heidelberg New York.
Lampariello F, Sciandrone M (2001) IEEE Trans. On Neural Networks 12(5):1235–1242.
Kim S, Dougherty ER, Barrera JY, et al. (2002) Journal of Computational Biology 9:127–146.
Sima C, Braga-Neto U, Dougherty ER (2005) Bioinformatics 21(7):1046–1054.
Skurichina M, Raudys S, Duin RP (2000) IEEE Trans. On Neural Networks 11(2):504–511.
Parzen E (1962) Ann. Math. Statistics 33:1064–1076.
Tibshirani R, Parker J, Hastie T, et al. (2003) Proc Natl Acad Sci USA 100(14):8418–8423.
Turashvili G, Bouchal J, Burkadze G, et al. (2005) Biomedical papers 149(1):63–68.
Uzma SS, Robert HG (2004) Journal of Cellular Biochemistry 91:161–169.
Chow ML, Moler EJ, Mian IS (2001) Physiol Genomics 5:99–111.
Jeronimo C, Henrique R, Oliveira J, et al. (2004) Journal of Clinical Pathology 57:872–876.
Cheng I, Stram DO, Penney KL, et al. (2006) Journal Natl. Cancer Inst. 98(2):123–124.
Graff JR, Deddens JA, Knoicek BW, et al. (1002) Clinical Cancer Research 7:1987–1991.
Zhang C, Li H, Fan J, et al. (2006) BMC Bioinformatics, 7:202–236.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Huang, D., Chow, T.W.S. (2008). Towards the Enhancement of Gene Selection Performance. In: Kelemen, A., Abraham, A., Chen, Y. (eds) Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76803-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-76803-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76802-9
Online ISBN: 978-3-540-76803-6
eBook Packages: EngineeringEngineering (R0)