Abstract
A double-loop network(DLN) G(N; r, s ) is a digraph with the vertex set V = {0, 1,..., N − 1} and the edge set \(E=\{v \rightarrow v + r(\mod N)\) and \(v \rightarrow v + s(\mod N)|v\in V\) }. Let D(N; r, s) be the diameter of G, D(N) = min {D(N; r, s)|1 ≤ r < s < N and \(\gcd(N; r, s ) = 1 \}\) and D 1(N) = min {D(N; 1, s)|1 < s < N }. Although the identity D(N) = D 1(N) holds for infinite values of N, there are also another infinite set of integers with D(N) < D 1(N). These other integral values of N are called non-unit step integers or nus integers. Xu and Aguil\(\acute{o}\) et al. gave some infinite families of 0-tight nus integers with D 1(N) − D(N) ≥ 1.
In this work, an algorithm is derived for finding nus integers. The running time complexity of the proposed algorithm is O(k 2)O(N 1/4logN). It is verified by computer that the algorithm works extremely well. A new approach is also proposed for finding infinite families of nus integers. As an example, we present an infinite family of of 0-tight nus integers with D 1(N) − D(N) = 4.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguiló, F., Fiol, M.A.: An efficient algorithm to find optimal double loop networks. Discrete Mathematics 138, 15–29 (1995)
Aguiló, F., Simó, E., Zaragozá, M.: Optimal double-loop networks with non-unit steps. The Electronic Journal of Combinatorics 10, \(\sharp\)R2(2003)
Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a survey. J. Parallel Distribut. Comput. 24, 2–10 (1995)
Chan, C.F., Chen, C., Hong, Z.X.: A simple algorithm to find the steps of double-loop networks. Discrete Applied Mathematics 121, 61–72 (2002)
Erdös, P., Hsu, D.F.: Distributed loop networks with minimum transmission delay. Theoret. Comput. Sci. 100, 223–241 (1992)
Esqué, P., Aguiló, F., Fiol, M.A.: Double commutative-step digraphs with minimum diameters. Discrete Mathematics 114, 147–157 (1993)
Hwang, F.K.: A complementary survey on double-loop networks. Theoret. Comput. Sci. 263, 211–229 (2001)
Fiol, M.A., Yebra, J.L.A., Alegre, I., Valero, M.: A discrete optimization problem in local networks and data alignment. IEEE Trans. Comput. C-36, 702–713 (1987)
Li, Q., Xu, J., Zhang, Z.: The infinite families of optimal double loop networks. Discrete Applied Mathematics 46, 179–183 (1993)
Wong, C.K., Coppersmith, D.: A combinatorial problem related to multimode memory organizations. J. Ass. Comput. Mach. 21, 392–402 (1974)
Xu, J.: Designing of optimal double loop networks. Science in China, Series E E-42(5), 462–469 (1999)
Xu, J., Liu, Q.: An infinite family of 4-tight optimal double loop networks. Science in China, Series A A-46(1), 139–143 (2003)
Zhou, J., Xu, X.: On infinite families of optimal double-loop networks with non-unit steps, Ars Combinatoria (accepted)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dai, X., Zhou, J., Wang, K. (2007). An Algorithm to Find Optimal Double-Loop Networks with Non-unit Steps. In: Xu, M., Zhan, Y., Cao, J., Liu, Y. (eds) Advanced Parallel Processing Technologies. APPT 2007. Lecture Notes in Computer Science, vol 4847. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76837-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-76837-1_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76836-4
Online ISBN: 978-3-540-76837-1
eBook Packages: Computer ScienceComputer Science (R0)