Skip to main content

Texture-Based Objects Recognition for Vehicle Environment Perception Using a Multiband Camera

  • Conference paper
Advances in Visual Computing (ISVC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4842))

Included in the following conference series:

  • 3033 Accesses

Abstract

The vision-based intelligent vehicle systems for environment perception have required integration of image data acquired from multiple cameras. We developed multiband camera, which can simultaneously obtain both images of visible color and near infrared. In this paper, we present a texture-based objects recognition under road environment scene using a multiband image. The new color feature is proposed to cluster meaningful regions of a multiband image and the texture segmentation is utilized in classification of texture-based objects. Experimental results show that the proposed method effectively recognizes the texture-based objects including roads, buildings, trees, and sky, as well as faces of pedestrians. In the future, by integrating the shape-based objects recognition, which includes pedestrians, cars, and bicycles with texture-based objects recognition, the proposed system can expand into a complex scene understanding system for vehicle environment perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ishida, S., Tanaka, J., Kondo, S., Shingyoji, M.: The method of a driver assistance system and analysis of a driver’s behavior. In: Proc. 10th World Congress on Intell. Transp. Syst. p. 3168 (2003)

    Google Scholar 

  2. Kimura, Y.: Stereo vision for obstacle detection. In: Proc. 13th World Congress on Intell. Transp. Syst. p. 1082 (2006)

    Google Scholar 

  3. Tsuji, T., Hattori, H., Watanabe, M., Nagaoka, N.: Development of night-vision system. IEEE Trans. Intell. Transp. Syst. 3(3), 203–209 (2002)

    Article  Google Scholar 

  4. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition with Cortex-Like Mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  5. Leibe, B., Cornelis, N., Cornelis, K., Gool, V.L.: Dynamic 3D Scene Analysis from a Moving Vehicle. In: IEEE Conf. Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  6. Morris, N., Avidan, S., Matusik, W., Pfister, H.: Statistics of Infrared Images. In: IEEE Conf. Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  7. Jackson, T.J., Chenb, D., Cosha, M., Lia, F., Andersonc, M., Walthalla, C., Doriaswamya, P., Hunta, E.R.: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment 92(4), 475–482 (2004)

    Article  Google Scholar 

  8. Nami, M., Tsutsumi, D., Nagao, S., Doi, Y., Ishikawa, M., Atanabe, K.: Study on Detecting Freeze of Road Surface by using Near Infrared Absorption Image. Hokkaido Industrial Research Institute Technical Report, 296, 159–168 (2000)

    Google Scholar 

  9. Chu, R., Liao, S., Zhang, L.: Illumination Invariant Face Recognition Using Near-Infrared Images. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 627–639 (2007)

    Article  Google Scholar 

  10. Toyofuku, K., Iwata, Y., Hagisato, Y.: Night view system using near-infrared light. TOYOTA Technical Review 52(2) (2002)

    Google Scholar 

  11. Gunturk, B.K., Altunbasak, Y., Mersereau, R.: Color plane interpolation using alternating projections. IEEE Trans. Image Process. 11(9), 997–1013 (2002)

    Article  Google Scholar 

  12. Kidono, K., Ninomiya, Y.: Visibility Estimation under Night-time Conditions using a Multiband Camera. In: IEEE Intell. Veh. Symposium (2007)

    Google Scholar 

  13. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  14. Ohta, Y., Kanade, T., Sakai, T.: Color Information for Region Segmentation. Computer Graphics and Image Processing 13, 222–241 (1980)

    Article  Google Scholar 

  15. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. In: 16th Int. Conf. on Pattern Recognition, vol. IV, pp. 150–155 (2002)

    Google Scholar 

  16. Kurita, T., Otsu, N.: Texture classification by higher order local autocorrelation features. In: Proc. of Asian Conf. on Computer Vision, pp. 175–178 (1993)

    Google Scholar 

  17. Tuceryan, M., Jain, A.K.: Chapter 2.1: Texture Analysis. In: The Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific Publishing Co. Singapore (1998)

    Google Scholar 

  18. McLaughlin, J.A., Raviv, J.: Nth-order autocorrelations in pattern recognition. Information and Control 12, 121–142 (2000)

    Article  Google Scholar 

  19. Kang, Y., Morooka, K., Nagahashi, H.: Texture classification using hierarchical linear discriminant space. IEICE Trans. Inf. & Syst. 88-D(10), 2380–2388 (2005)

    Article  Google Scholar 

  20. Smith, S.P., Anil, K.J.: A test to determine the multivariate normality of a dataset. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 757–761 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, Y., Kidono, K., Kimura, Y., Ninomiya, Y. (2007). Texture-Based Objects Recognition for Vehicle Environment Perception Using a Multiband Camera. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76856-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76856-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76855-5

  • Online ISBN: 978-3-540-76856-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics