Abstract
This paper presents a method to reduce time complexity of the computation of higher–order tensor lines. The method can be applied to higher–order tensors and the spherical harmonics representation, both widely used in medical imaging. It is based on a gradient descend technique and integrates well into fiber tracking algorithms. Furthermore, the method improves the angular resolution in contrast to discrete sampling methods which is especially important to tractography, since there, small errors accumulate fast and make the result unusable. Our implementation does not interpolate derived directions but works directly on the interpolated tensor information. The specific contribution of this paper is a fast algorithm for tracking lines tensor fields of arbitrary order that increases angular resolution compared to previous approaches.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., LeBihan, D.: Fiber orientation mapping in an anisotropic medium with NMR diffusion spectroscopy. In: 11th Annual Meeting of the SMRM, Berlin, vol. 1221 (1999)
Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self–diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance 3, 247–254 (1994)
Alexander, D.C.: An introduction to computational diffusion MRI: the diffusion tensor and beyond. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 83–106. Springer, Heidelberg (2006)
Frank, L.R.: Anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine 45, 935–939 (2001)
Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine 47, 1083–1099 (2002)
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter. Magnetic Resonance in Medicine, 577–582 (2002)
Tuch, D.S.: Diffusion MRI of Complex Tissue Structure. PhD thesis, Massachusetts Institute of Technology (2002)
Alexander, D.C.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Problems 19, 1031–1046 (2003)
Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magnetic Resonance in Medicine 50, 955–965 (2003)
Vilanova, A., Zhang, S., Kindlmann, G., Laidlaw, D.: An introduction to visualization of diffusion tensor imaging and its applications. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, Springer–Verlag Berlin Heidelberg, pp. 121–153. Springer, Heidelberg (2006)
Blaas, J., Botha, C.P., Vos, F.M., Post, F.H.: Fast and reproducible fiber bundle selection in DTI visualization. In: Silva, C.T., Gröller, E., Rushmeier, H. (eds.) Proceedings of IEEE Visualization 2005, pp. 59–64. IEEE Computer Society Press, Los Alamitos (2005)
Weinstein, D.M., Kindlmann, G.L., Lundberg, E.C.: Tensorlines: Advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of IEEE Visualization 1999, pp. 249–253. IEEE Computer Society Press, Los Alamitos (1999)
Hlawitschka, M., Scheuermann, G.: HOT–lines — tracking lines in higher order tensor fields. In: Silva, C.T., Gröller, E., Rushmeier, H. (eds.) Proceedings of IEEE Visualization 2005, pp. 27–34. IEEE Computer Society Press, Los Alamitos (2005)
Descoteaux, M., Deriche, R., Lenglet, C.: Diffusion tensor sharpening improves white matter tractography. In: SPIE Medical Imaging, San Diego, California, USA (2007)
Tricoche, X., Scheuermann, G.: Topological methods for tensor visualization. In: Hansen, C., Johnson, C.R. (eds.) Visualization Handbook, Elsevier, Amsterdam (2004)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ninth dover printing, tenth gpo printing edn. Dover, New York (1964)
Ivanic, J., Ruedenberg, K.: Rotation matrices for real spherical harmonics. Journal of Physical Chemistry 100, 6342–6347 (1996)
Ivanic, J., Ruedenberg, K.: Corrections of rotation matrices for real spherical harmonics. Journal of Physical Chemistry A 102, 9099 (1999)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance in Medicine 58(3), 497–510 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hlawitschka, M., Scheuermann, G., Anwander, A., Knösche, T., Tittgemeyer, M., Hamann, B. (2007). Tensor Lines in Tensor Fields of Arbitrary Order. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76858-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-76858-6_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76857-9
Online ISBN: 978-3-540-76858-6
eBook Packages: Computer ScienceComputer Science (R0)