
When e-th Roots Become Easier Than Factoring

Antoine Joux1,�, David Naccache2, and Emmanuel Thomé3

1
dga and Université de Versailles, uvsq prism 45 avenue des États-Unis,

f-78035 Versailles cedex, France
antoine.joux@m4x.org

2 École normale supérieure, Équipe de cryptographie, 45 rue d’Ulm,
f-75230 Paris cedex 05, France

david.naccache@ens.fr
3

inria Lorraine, loria, cacao – bâtiment a, 615 rue du Jardin botanique,
f-54602 Villiers-lès-Nancy cedex, France

emmanuel.thome@normalesup.org

Abstract. We show that computing e-th roots modulo n is easier than
factoring n with currently known methods, given subexponential access
to an oracle outputting the roots of numbers of the form xi + c.

Here c is fixed and xi denotes small integers of the attacker’s choosing.
The attack comes in two flavors:

– A first version is illustrated here by producing selective roots of the

form xi + c in Ln(1
3 , 3

√
32
9). This matches the special number field

sieve’s (snfs) complexity.
– A second variant computes arbitrary e-th roots in Ln(1

3 , γ) after a
subexponential number of oracle queries. The constant γ depends on
the type of oracle used.

This addresses in particular the One More rsa Inversion problem,
where the e-th root oracle is not restricted to numbers of a special

form. The aforementioned constant γ is then 3
√

32
9 .

Constraining the oracle to roots of the form e
√

xi + c mod n
increases γ.

Both methods are faster than factoring n using the gnfs

(Ln(1
3 , 3

√
64
9)).

This sheds additional light on rsa’s malleability in general and on
rsa’s resistance to affine forgeries in particular – a problem known to be
polynomial for xi > 3

√
n, but for which no algorithm faster than factor-

ing was known before this work.

Keywords: rsa, factoring, nfs, roots.

1 Introduction

The rsa cryptosystem [17] is commonly used for providing privacy and authen-
ticity of digital data. A very common historical practice for signing with rsa

� Work partially supported by dga research grant 05.34.058.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 13–28, 2007.
c© International Association for Cryptology Research 2007

14 A. Joux, D. Naccache, and E. Thomé

was to first hash the message, add a padding pattern c and then raise the result
to the power of the decryption exponent. This paradigm is the basis of numerous
standards such as pkcs#1 v1.5 [18].

Let n and e denote usual rsa public parameters (with �log2 n� = N)1.
In this paper we explore rsa signatures with a fixed c but without the hash

function, i.e. modular roots of the form:

e
√

c + x mod n

We call such numbers affine modular roots (amrs).
A thread of publications [15,7,10,14,4,13] stretching over a decade progres-

sively established that given access to an amr-oracle, new amrs could be forged
in polynomial complexity for x > 3

√
n.

No strategies faster than factoring n are known for x < 3
√

n – a case tackled
here at the cost of subexponential complexity. The main novelty in this paper is
that, while subexponential, our method forges new amrs for arbitrarily small x
(down to x < ε

√
n, ∀ε > 0) faster than factoring n.

Moreover, we show that access to an e-th root oracle (in particular, an amr-
oracle) even allows to compute arbitrary e-th roots faster than factoring n. Here,
the arbitrary e-th root to be computed is not known before all oracle queries
have been completed.

We achieve this by tweaking the quadratic sieve (qs) and the number field
sieve (nfs) factoring algorithms.

The Results. Denoting Ln(α, c) = exp
(
c (1 + o(1)) (log n)α (log log n)1−α

)
,

we show that:

– Using a qs-like algorithm, new amrs can be computed in L n
x
(1
2 , 1) instead

of the Ln(1
2 , 1) required for qs-factoring n.

– Using an nfs-like approach, we selectively produce new amrs in Ln(1
3 , 3

√
32
9).

This matches the special number field sieve’s (snfs) complexity which is

substantially lower than the Ln(1
3 , 3

√
64
9) required to gnfs-factor n.

Our experimental results for N = 512 and a recent snfs-factoring record2,
clearly underline the insecurity of affine-padding rsa.

– We present a procedure for computing arbitrary e-th roots in Ln(1
3 , 3

√
32
9 �

1.53), requiring a general (not only amr) e-th root oracle.
A more practical variant with a slightly higher complexity Ln(1

3 , 1.58) was
used in the experiments reported in this paper.

– Finally, a last variant allows the computation of arbitrary e-th roots given
access to an amr-oracle with complexity Ln(1

3 , 3
√

6). To date, we could not
make this variant practical.

1 Throughout this paper, we will frequently denote by |x| the bitlength of x.
2 [1], factoring a 1039-bit number using � 95 Pentium-D-years at 3 GHz.

When e-th Roots Become Easier Than Factoring 15

Our algorithms rely on an extension of Montgomery’s square root algorithm
for the number field sieve [16]. If one avoids this algorithm, alternative variants

exist with claim a higher complexity (Ln(1
3 , 3

√
9
2)).

2 The Strategy – A General Outline

For the sake of simplicity assume that |x| = N
4 (generalization to smaller x sizes

is straightforward). We start by writing c, as a modular ratio3:

c =
a

b
mod n where |a| = (1 − s)N and |b| = sN

for some 0 < s < 1 that will be determined later.
Noting that c+x = a+xb

b mod n, it is easy to derive an index calculus attack4

as in [6]5 on numbers of the form a + xb, that we expect to be smooth with
respect to some factor base B. We can ascertain that a + xb is partially smooth
by applying a special-q strategy. Two options are possible: Either choose different
partial products of size N

4 of primes belonging to B (denote these partial products
ui) and sieve on xi values such that xi = −c mod ui or, select as special-q
primes of size N

4 and use them as the ui in the first option. From an asymptotic
standpoint, the two approaches are equivalent. In practice, the first approach can
produce any given equation more than once and thus require extra bookkeeping.
As for the second approach, each special-q requires one extra equation to cancel
out, thereby resulting in a larger system of equations.

It remains to optimize s. To maximize the smoothness odds of a + xb we
require that |a| = |xb| hence:

(1 − s)N = |a| = |xb| = |x| + |b| =
N

4
+ |b| =

N

4
+ sN ⇒ s =

3
8

In other words, we need to find multiplicative relations between numbers of
size 5N

8 divisible, by construction, by smooth factors of size N
4 . All in all this

amounts to chasing smooth numbers of size 3N
8 which is easier than qs-factoring

n (identical task for numbers of size N
2 = 4N

8).
More generally, when x is an N

t bit number, the job boils-down to finding
smooth numbers of size N(t−1)

2t i.e. qs-factoring N(t−1)
t bit rsa moduli.

Hence, the presented strategy approaches the qs’s complexity as t grows, while
remaining below the qs’s complexity curve6.

3 E.g. Using a continued fraction algorithm.
4 Treat b as an extra element of the factor base, together with the primes in the basis

to account for the denominator in the equations.
5 In [6] the signing oracle is used to compute e-th roots whose combination allows to

compute new e-th roots of factor-base elements.
6 To sieve, it suffices to set xi = −c mod ui and consider successively a(xi + jui) + b

for j = 1, 2, . . . (note that this will pollute a logarithmic number of bits in c).

16 A. Joux, D. Naccache, and E. Thomé

Given that the quadratic-sieve is not the fastest factoring strategy for usual-
size rsa moduli, the extension of the above strategy to the nfs is a natural
question (that this paper answers positively).

nfs algorithms work by exhibiting relations between objects in two different
“worlds”. In some cases, we have a single number field and consider relations
between integers and elements in that field. In other cases, there are two number
fields. Nonetheless, with both approaches, there are two sides to consider. In this
paper, the amr-oracle is going to replace one of the two sides. Consequently,
our setting is that of a single-sided nfs. This turns out to greatly improve the
smoothness probability and hence the algorithm’s efficiency.

We start by selecting a parameter d and finding a polynomial f of degree
d having sufficiently small coefficients such that f(c) ≡ 0 mod n. Without loss
of generality, we may assume that f is irreducible over Q. Indeed, if f = f1 ×
f2, either gcd(f1(c), n) is a non-trivial factor of n, or we can use the (smaller)
polynomial f1 instead of f .

Once f is chosen, we construct the number field K = Q[α] where α is a
root of f over Q. We now proceed as in the nfs and given integers x, we
construct elements α + x ∈ Q[α] with smooth norm over some factor base
B. We recall that the norm of α + x is the absolute value of f(−x). Note a
major difference with nfs-factoring: indeed, we only need to smooth a single
α +x for each candidate x as there is no second (or rational) side to smooth
in addition. Instead, the second side is given for free by the amr-oracle for
the number corresponding to α + x, i.e. for c + x. When the norm is smooth,
we can decompose α + x into a product of ideals of small norm in the ring
of integers OK of K = Q[α].

Once enough smooth elements are found, we write them down as rows in a
matrix where each row contains the valuation of the corresponding α+x at each
prime ideal occurring in its decomposition. We also add to each row enough
character maps in order to account for the existence of units in the number
field.

Then, using a sparse linear algebra algorithm, we find a linear combination of
rows equal to zero modulo e. This allows us to write an e-th power in Q[α] as a
product of α + xi.

The final step computes the actual e-th root of this e-th power. This yields
a multiplicative relation between amrs corresponding to the α + xi used in the
relation. Thus, querying all these values but one yields a new amr for the missing
value. The e-th root can be computed in a way very similar to the nfs’ square
root computation phase.

Alternatively, the final step can be replaced by a more involved strategy.
Namely, combining the e-th root computation with a descent procedure very
similar to the individual logarithm step of discrete logarithm computations with
the nfs. This enables the calculation of e-th roots of arbitrary values, i.e. not
restricted to the form c + x, by making a small number of additional queries of
the restricted form c + x. This option is presented in Section 4.

When e-th Roots Become Easier Than Factoring 17

3 A Detailed Step-by-Step Description

3.1 Polynomial Construction

Given a target degree d we first need to construct a polynomial f irreducible
over Q. f will then be used to define the number field K = Q[α]. The two
important constraints on f are that its coefficients should be small and that we
must have f(c) = 0 mod n. Since we want to minimize the average norm f(−x)
of numbers α + x, it is a good idea to use a skewed polynomial. More precisely,
assume that B bounds the absolute value of x, then we want to choose a bound
C such that the coefficient of degree i in f has absolute value smaller than C

Bi .
Assuming7 that Bd(d+1) < n, we choose C = d+1

√
nBd/2 and the polynomial

f can be constructed by reducing the lattice generated by the columns of the
(d + 1) × (d + 1) matrix

L =

⎛
⎜⎜⎜⎝

Λ · · · Λcd Λn
1 0 0

. . .
...

0 Bd 0

⎞
⎟⎟⎟⎠

where Λ is a sufficiently large constant to guarantee that any short vector in
the lattice has zero in its first coordinate. Such a short vector can be easily
interpreted as a polynomial by reading the coefficient of xi in row i + 2 (the
coefficient should be re-normalized by a division by Bi). This polynomial clearly
has c as a root modulo n. Moreover, when evaluating the polynomial at x smaller
than B (in absolute value) we see that each term is bounded by the corresponding
value in the initial short vector.

Since the determinant of L is nBd(d+1)/2, we expect short-vector coefficients
to be of size

C = d+1
√

nB
d
2 2

d
4

3.2 Sieving

From a sieving standpoint, there is an essential difference between our algorithm
and the nfs. Indeed, our sieving has a single degree of freedom instead of two.
More precisely, instead of scanning numbers of the form aα+ b for a fixed α and
arbitrary pairs of small {a, b}, we need to examine numbers of the form α + x.

Luckily, the bound on x is large enough to compensate the absence of the sec-
ond degree of freedom but this restricts our sieving technique options. Indeed, we
cannot use a lattice sieve strategy and have to rely instead on a straightforward
sieve-by-line algorithm. To avoid using large numbers while sieving over x, we
used a special-q approach: for each special-q prime ideal 〈q, α − r〉, we considered
the algebraic integers α + (qx − r), with x ∈ [−S

q , +S
q].

7 This is necessary to avoid finding zero for high degree coefficients; of course, where
necessary, we can always lower B in this construction and sieve over a smaller x
range (as long as enough equations are found.).

18 A. Joux, D. Naccache, and E. Thomé

3.3 Linear Algebra and Characters

Depending on the size of e, one may either use Lanczos/Wiedeman or block
Lanczos/Wiedeman approach. If e is large enough, no self-orthogonal vector
appears (unless we are extremely unlucky) and the simple approach succeeds.
For smaller e, a block approach is required (the block size 2 ≤ z ≤ 32 varies
with e and is a bit lesser when e = 3).

When linear algebra is performed directly on the sieving phase’s output, the
method yields a multiplicative relation between ideals of the form:

∏
i

〈α + xi〉μi =

⎛
⎝∏

j

p
νj

j

⎞
⎠

e

Such a relation, however, is insufficient to ensure that the product
∏

i(α+xi)μi

is an e-th power in K. Obstructions may arise from the e-part of the ideal class
group of OK , as well as from the quotient of the unit group O∗

K/(O∗
K)e. To

annihilate these obstructions we have to add characters. We require that:

χ

(∏
i

(α + xi)μi

)
=

∑
i

μiχ(α + xi)

vanishes, for several (additive) character maps χ : K∗ → Fe. We have the fol-
lowing choices for character maps:

– In [19], an approximation of the e-adic logarithm is used. Such characters
are easy to compute but might fail to account for the full obstruction, as
they cover at most the obstruction stemming from the unit group. Should e
ramify in OK , or eOK be divisible by a prime ideal belonging to the factor
base, technicalities occur but do not prevent from using these characters.

– It is also possible to follow the classical approach used for nfs-factoring [3]
i.e. test for powers modulo primes congruent to 1 mod e. The number of
characters accessible thereby is infinite. To map these multiplicative charac-
ters to additive ones, a discrete logarithm modulo e must be solved, which
is trivial for small e. For larger e values (where this might be a problem)
heuristic arguments indicate that characters of the first kind would suffice
anyway [19].

A typical drawback of characters is that they add a dense part to the relation
matrix, which might cause a slight performance penalty. In the particular case
we are interested in (just as in nfs-factoring) it is possible to perform the linear
algebra without the character columns, produce several row dependencies and
do a second reduction to recombine these dependencies into dependencies with
vanishing characters.

If we elect to adopt the latter idea it becomes particularly advisable to use
block algorithms for the linear algebra, since these algorithms output several
vectors of the null-space simultaneously.

When e-th Roots Become Easier Than Factoring 19

The linear algebra step also gives us the opportunity to check that K’s class
number is co-prime to e (to avoid possible technical problems infra). We do so
by checking that the rank of the relation matrix is not abnormally low modulo
e. This extra check is achieved in the same complexity and is therefore ignored
hereafter. Moreover, when e is a large prime, we do not need to test anything,
since the probability that e divides the class number is negligible.

3.4 Root Extraction

The linear algebra stage yields a product of algebraic integers π =
∏

(α + xi)μi

which is known to be an e-th power in K since χ(π) = 0 for satisfyingly many
characters χ. This allows us to compute an e-th root in Zn for any c + xi′ , as
long as the corresponding exponent μi′ �= 0 mod e. To do so, we first have to
raise π to the power of μ−1

i′ mod e. In other words, we can assume without loss
of generality that μi′ = 1.

When e is small, the computation of the e-th root of π can be done using a
straightforward generalization of Montgomery’s square root algorithm [16].

Once the e-th root R(α) is computed, we have:

(c + xi′)
∏
i�=i′

(c + xi)μi = R(c)e mod n,

i.e.: (c + xi′)d = R(c)
∏
i�=i′

(c + xi)−μi mod n.

One might question the applicability of Montgomery’s algorithm to very large
values of e. Our computations in appendix a indicate that e = 65, 537 is achiev-
able with no difficulty and tests up to e � 1015 were conducted successfully.
These results lead us to infer that this approach is practical at least for our
range of interest.

However, should this strategy become difficult for larger e, a different (more
expensive) approach might be used: replace the sparse linear algebra modulo e by
exact Gaussian elimination or Hermite normal form and find relations expressing
each ideal as a product (quotient) of smooth elements. This associates to each
ideal a projection8 in Zn and also its e-th root. The drawbacks are higher memory
requirements and a higher exponent in the linear algebra’s complexity.

3.5 Complexity Analysis

Our complexity analysis closely follows the nfs’s one. Let w denote the linear
algebra’s exponent. We write the degree d, the sieving range [−S, +S] and the
factor base bound B as:

d = δ × 3

√
log n

log log n
, S = Ln(

1
3
, wβ) and B = Ln(

1
3
, β).

8 In theory, such a projection can be defined rigorously using the Hilbert class field of
the number field used. Indeed, in the Hilbert class field, all ideals are principal and
sending a generator to Zn is easy; however, since the degree of the Hilbert class field
is extremely large, it cannot be used in practice.

20 A. Joux, D. Naccache, and E. Thomé

This particular choice of S and B ensures that the sieving step (which costs
S) and the linear algebra step (which costs Bw) are balanced.

Using the lattice-based construction, the coefficients of f have average size
A = d

√
n = Ln(2

3 , 1
δ). By choosing a skewed f , we find that the size of f(x) for

x ∈ [−S, +S] is:

A × Sd/2 = Ln(
2
3
,
1
δ

+
w

2
δβ)

The probability that f(x) is B-smooth is Ln(1
3 , −π) with π = 1

3 (1
δβ + w

2 δ).
To get enough smooth relations, we need to ensure that wβ − π = β.

For w = 2, these equations lead to the choice {δ = 3

√
2
3 , β = 3

√
4
9}. As a

consequence, the complexity of the sieving and linear algebra steps put together

is Ln(1
3 , 2β) = Ln(1

3 , 3

√
32
9). This is equal to the complexity the snfs factoring

algorithm which applies to a restricted class of numbers [12].
Another very important parameter is the number of amr-oracle queries, which

is subexponential but significatively smaller than the algorithm’s runtime. This

number of queries is Ln(1
3 , β) = Ln(1

3 , 3

√
4
9).

The alternative using integer linear algebra mentioned above yields a com-
plexity of:

Ln(
1
3
, 3

√
2w4

9(w − 1)2
)

The case w = 3 gives Ln(1
3 , 3

√
9
2 � 1.65). Note that according to [8,9],

the integer linear algebra can be done with exponent w = 2.5, which yields

Ln(1
3 , 3

√
625
162 � 1.57). However this approach requires asymptotically fast matrix

multiplication techniques which might prove too cumbersome for cryptographic
applications.

As our algorithms are subexponential, the assessment of their experimental
behavior is essential. We hence implemented them and actually forged a 512-bit
amr. Details are given in Appendix a.

Open Problem – Potential Improvements: When the number of fixed pad
bits is small enough, the possible sieving range of x when sieving over c + x (or
α + x) may be too large9.

Under such circumstances, we get some additional freedom when constructing
f . Indeed, we may replace c by some c′ � c, thereby reducing the sieving range.
Clearly, amongst all possible c′ values some yield f ′-s whose coefficients are
smaller than average.

We could not find any efficient way of taking advantage of this extra freedom
to build better polynomials and further reduce the attack’s complexity.

9 Cf. To the related footnote in section 3.1.

When e-th Roots Become Easier Than Factoring 21

4 Attacking the One More rsa Inversion Problem

Up to now, we have obtained either an amr-forgery or an adaptive chosen cipher-
text attack (cca2) on plain rsa. In this section, we extend the attack to obtain
a non adaptive chosen ciphertext attack (cca1) on plain rsa. Equivalently, we
attack the One More rsa Inversion Problem, proposed by Bellare et al., in [2].
Again, while subexponential, this attack is faster than gnfs-factoring n. In the
context of the One More rsa Problem it is not really meaningful to assume that
the initial rsa queries have a special form, thus we grant the attacker access to
an unlimited e-th root oracle during the first phase of the attack.

Once the restriction on oracle queries is lifted, we are no longer constrained to
use polynomials with a prescribed root P . Moreover, we are no longer limited to
a single dimensional sieve, but can use a classical nfs sieve with two degrees of
freedom, using a lattice sieving technique. This does not change the asymptotic
complexity but allows us to reuse existing fast sieving code more easily. Not being
restricted to a prescribed root, we may use any polynomial of our choice. Despite
this clear gain, to solve the One More rsa Inversion Problem and become non-
adaptive, we need to devise an algorithm allowing us to compute the e-th root of
an arbitrary number without any additional oracle queries. This requires a new
descent procedure since the technique sketched at the end of Section 2 requires
additional oracle queries. Looking at similar problems arising in the individual
discrete logarithm phase of discrete logarithms computations, we see that such
a non adaptive descent can be done by alternating between two nfs sides. Thus,
we need to introduce a second side into our algorithm. While, at a first glance,
this seems to void our single-sided nfs complexity improvement, it turns out
that this intuitive perception is false since we can initially do the single sided
nfs separately for both sides.

The addition of a second side entails a complication for the descent, however.
To achieve the announced complexity, the initial factor base bound is set to

Ln(1
3 , 3

√
4
9). This is well below the Ln(1

3 , 3

√
8
9) encountered when computing dis-

crete logarithms. This implies that the descent procedure has to descend below
what is done for computing discrete logarithms. While the impact on the overall
complexity is not visible, this is a clear practical concern. To compensate for
this fact, we add an intermediate phase in our algorithm in order to enlarge the

factor base from Ln(1
3 , 3

√
4
9) to Ln(1

3 , 3

√
8
9).

4.1 The Inversion Algorithm

Step 0 – Setup. We first set up on the algebraic side a number field K = Q(α)
defined by a polynomial equation f(α) = 0. The easiest (though not unique)
choice for the second side is a rational side given by a polynomial g such that f
and g share a common root P modulo n. The classical base-m technique can be
used for this purpose.

We denote by ρ the rational root of g (we have ρ = m if g is monic).

22 A. Joux, D. Naccache, and E. Thomé

Step 1 – Precomputation. The factor base F on the algebraic side consists

of ideals of norm bounded by B � Ln(1
3 , 3

√
4
9). By sieving, we obtain coefficient

pairs {x, y} yielding relations of the form:

(x − yα) =
∏
p∈F

pmp , and χ(x − yα) = (λk)k=1,...,c

where χ is a character map onto Fc
e, for some arbitrary dimension c. We con-

catenate the coefficients (mp) and λk to form the rows of a matrix M .

Step 2 – Factor Base Extension. The extended factor base F ′ consists of

ideals of norm bounded by B′ � Ln(1
3 , 3

√
8
9). We sieve on the algebraic side only,

using each additional prime ideal that we want to add as a special-q. We ask for
a single relation between this prime ideal and the smaller ones.

Step 3 – Oracle Queries. We query the oracle for the e-th root of the numbers
x− yP for each integers pair {x, y} encountered in steps 1 and 2. We also query
for the e-th root of all prime numbers below B′.

Step 4 – Descent Initialization. In our game, it is only at this point that
the attacker learns the challenge number t whose e-th root he must compute.

The descent mimics individual discrete logarithm computations. The descent
is initialized by picking a random mask m and two integers u and v such that
u
v ≡ met mod n, and which factor simultaneous into primes bounded by Ln(2

3 , •).

Step 5 – Descent. We maintain a set {(σ, ε)} of polynomials σ and exponents
ε such that S =

∏
σε satisfies:

(S(α)) =
∏

p∈F ′

pμp · I1 (algebraic side),

and
u

v
S(ρ) =

∏
p<B′

pνp · I2 (rational side).

Initially S = 1, and the exponents νp mark the prime numbers appearing in
the factorization of u and v.

The remaining terms I1 and I2 factor into ideals (or primes) outside the factor
base. The descent procedure aims at eliminating these ideals. For this purpose,
we iteratively use special-q sieving to trade these ideals for ideals of smaller
norm.

Using the relations obtained from the factor base extension step, we form
another rational fraction T such that the ideal (S(α)T (α)) factors into ideals
belonging to the smaller factor base F .

Step 6 – Linear Algebra. Once we have reached the point where I1 = (1)
and I2 = (1), we seek a linear combination of the rows of the matrix M which

When e-th Roots Become Easier Than Factoring 23

equals the valuations and character values corresponding to the algebraic number
S(α)T (α).

This inhomogeneous linear system amounts to exhibiting an algebraic number
U(α) obtained as a combination of the numbers x−yα found in step 1, and such
that S(α)T (α)U(α) is an e-th power in K.

Step 7 – End. We use Montgomery’s e-th root algorithm to write the previous
number explicitly as an e-th power of an algebraic number r(α)e.

By construction, the e-th roots of T (P) and U(P) are known by the ora-
cle queries. Using the rational side product form and the corresponding oracle
queries, the e-th root of u

v S(P) is known as well. We infer:

e
√

t =
1
m

·
e
√

u
v S(P)
r(P)

e
√

T (P) e
√

U(P).

4.2 Complexity Analysis

Using the same parameters as in Section 3, all steps except steps 2 to 5 are

achieved with complexity Ln(1
3 , 3

√
32
9).

The complexity of step 2 depends of course on the choice of β′. The summation
from B = Ln(1

3 , β) to B′ = Ln(1
3 , β′) yields a complexity Ln(1

3 , θ) where θ ranges

from 3

√
32
9 when β′ is chosen close to β, up to 1.577 with the suggested value

β′ = 3

√
8
9 (the detailed calculations, omitted for brevity, will be included in the

iacr ePrint version of this paper).

The number of oracle queries (step 3) is Ln(1
3 , β′ = 3

√
8
9).

The descent (steps 4 and 5) is analyzed in [5], and found to have complexity
Ln(1

3 , 3
√

3).
We highlight, however, the complexity of the last descent steps, where ideals

of norm just above B′ = Ln(1
3 , β′) have to be canceled. For each such ideal,

one relation is sought. Using special-q sieving, we can form Ln(1
3 , 2α) candidates

whose algebraic (resp. rational) norm is bounded by Ln

(
2
3 , 1

δ + δ
(
α + β′

2

))

(resp. Ln

(2
3 , 1

δ

)
). One relation is expected when α satisfies:

2α − 1
3

(
1

δβ′ +
δ

β′

(
α +

β′

2

)
+

1
δβ′

)
= 0.

Substituting β′ = 3

√
8
9 above, we obtain that the last descent steps are

achieved in complexity Ln(1
3 , 0.99), which is not dominating. Using β′ = β

(thereby skipping the factor base extension), this cost would be Ln(1
3 , 1.27) which

is not dominating either.
This implies that we have some flexibility in the tuning of the factor

base extension. In order to match previously completed discrete logarithm

24 A. Joux, D. Naccache, and E. Thomé

computations, we chose to extend to β′ = 3

√
8
9 , but this choice should be regarded

as unconstrained.
We conclude that the asymptotic complexity of the arbitrary e-th root com-

putation is either Ln(1
3 , 3

√
32
9) or Ln(1

3 , 1.58). We believe the latter to be more
practical, as is illustrated by our experiments (Appendix b).

4.3 Computing e-th Roots with an amr-Oracle

While we have presented and implemented the arbitrary e-th root computation
algorithm using access to a general e-th root oracle, the same can also be achieved
using an amr-oracle only. In this case, the common root P is prescribed, and
it is not possible to use a rational side. Nonetheless, the above approach works
using two algebraic sides; steps 1, 2, 6, and 7 have to be done separately on
both sides. Step 4, however, turns out to have a higher complexity requirement
Ln(1

3 , 3
√

6), and the individual descent steps in step 5 are more expensive. We
could not demonstrate the practicality of such a setting.

Acknowledgements

The authors would like to thank P. Zimmermann who provided early experimen-
tal input for the quadratic sieve version.

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A., Osvik, D.: Electronic newsgroup
posting announcing the factorization of the 1039-th Mersenne number by the snfs
(May 21, 2007), http://www.loria.fr/zimmerma/records/21039-

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. Journal
of Cryptology 16(3), 185–215 (2003)

3. Buhler, J.P., Lenstra, A.K., Pollard, J.M.: Factoring integers with the number field
sieve. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) The development of the number
field sieve. LMN, vol. 1554, pp. 50–94. Springer, Heidelberg (1993)

4. Brier, É., Clavier, C., Coron, J.-S., Naccache, D.: Cryptanalysis of RSA signatures
with fixed-pattern padding. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 433–439. Springer, Heidelberg (2001)

5. Commeine, A., Semaev, I.: An algorithm to solve the discrete logarithm prob-
lem with the number field sieve. In: Yung, M., Dodis, Y., Kiayias, A., Malkin,
T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 174–190. Springer, Heidelberg
(2006)

6. Coron, J.-S., Naccache, D., Stern, J.P.: On the Security of RSA padding. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 1–18. Springer, Heidelberg
(1999)

7. De Jonge, W., Chaum, D.: Attacks on some RSA signatures. In: Williams, H.C.
(ed.) CRYPTO 1985. LNCS, vol. 218, pp. 18–27. Springer, Heidelberg (1986)

http://www.loria.fr/zimmerma/records/21039-

When e-th Roots Become Easier Than Factoring 25

8. Eberly, W., Giesbrecht, M., Giorgi, P., Storjohann, A., Villard, G.: Solving sparse
rational linear systems. In: Trager, B.M. (ed.) ISSAC 2006, pp. 63–70. ACM Press,
New York (2006)

9. Eberly, W., Giesbrecht, M., Giorgi, P., Storjohann, A., Villard, G.: Faster
inversion and other black box matrix computations using efficient block projec-
tions. In: Brown, C.W. (ed.) ISSAC 2007, pp. 143–150. ACM Press, New York
(2007)

10. Girault, M., Misarksy, J.-F.: Selective forgery of RSA signatures using redundancy.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 495–507. Springer,
Heidelberg (1997)

11. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math-
ematics of Computation 242(72), 953–967 (2003)

12. Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) AMCP 1998. LNM, vol. 1554,
pp. 11–42. Springer, Heidelberg (1993)

13. Lenstra, A.K., Shparlinski, I.: Selective forgery of RSA signatures with fixed-
pattern padding. In: Proceedings of the 5-th International Workshop on Prac-
tice and Theory in Public Key Cryptosystems: Public Key Cryptography. LNCS,
vol. 2274, pp. 228–236. Springer, Heidelberg (2002)

14. Misarsky, J.-F.: A multiplicative attack using LLL algorithm on RSA signatures
with redundancy. In: Proceedings of Crypto 1997. LNCS, vol. 1294, pp. 221–234.
Springer, Heidelberg (1997)

15. Misarsky, J.-F.: How (not) to design RSA signature schemes. In: Imai, H., Zheng,
Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 14–28. Springer, Heidelberg (1998)

16. Montgomery, P.L.: Square roots of products of algebraic numbers. In: W. Gautschi,
Ed., Mathematics of Computation 1943–1993: A Half-Century of Computa-
tional Mathematics, vol. 48 of Proc. Sympos. Appl. Math., pp. 567–571. AMS
(1994)

17. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. CACM 21 (1978)

18. RSA Laboratories, pkcs #1 : RSA cryptography specifications, version 2.0 (Septem-
ber 1998)

19. Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. Lon-
don Ser. a 345(1676), 409–423 (1993)

A Implementation Details

As our algorithms are subexponential, the assessment of their experimental
behavior is essential. We hence implemented them and actually computed a
512-bit amr.

We wrote our software chain in C and C++, relying upon the computer
algebra systems pari-gp and magma for a handful of specific tasks. The attacked
instance was c = 10154, e = 65, 537 and n = rsa-155 (rsa Laboratories 512-bit
challenge modulus).

The polynomial selection (section 3.1) was implemented in magma. To obtain
a satisfactory relation yield, we have set B = 222 (i.e a factor base comprising

26 A. Joux, D. Naccache, and E. Thomé

circa 300, 000 prime ideals). For S = 250, the polynomial selection program
returned the quartic candidate10 f(x) =

∑4
i=0 aix

i where:

a4 = 8

a3 = 5451802006688119

a2 = - 7344893341388732622814165470437

a1 = 833050630351576525584507524542841090670386803

a0 = - 80690902433251999116158516330020702292190401223994350445959

We worked in K = Q[x]/f and counted 295, 842 prime ideals of degree one (or
dividing the leading coefficient) in K’s integer ring.

The sieving process was run on a heterogeneous set of cpus: amd Opteron
250 at 2.4 GHz and Intel Core-2 at various clock speeds.

For each special-q ideal written as 〈q, α − r〉, we isolated the integers x ∈
[−228, 228] such that the added contribution of factor base ideals to the norm of
the ideal (r + qx − α) exceeded 2145 (out of an order of magnitude just below
2200). This selection process isolated instantaneously11 circa 100 candidates of
which around nineteen yielded relations. Considering the largest 20, 000 ideals
in the factor base as special-q ideals, we obtained 380, 000 relations. The sieving
step was distributed over twenty cpus and claimed a couple of hours. We stress
that we did not use any “large prime” variation.

After pruning the columns corresponding to ideals never encountered in the
factorizations, we were left with a row dependency to be obtained on a
283,355×283,355 matrix. We included four readily computed character columns
in the matrix, to ensure that the computed dependency corresponds to an e-th
power. The dependency was obtained using the block Wiedemann algorithm,
with a “blocking factor” of m = n = 8. This took four cpu

12 hours distributed
on four machines to produce one row dependency.

The e-th root computation was done in magma.
We started with a product formula π whose numerator and denominator had

a norm ≈ e7.6×105
and with a moderate unit contribution, since the logarithms

of the complex embeddings were approximately:

(λ + 45, λ + 45, λ − 155, λ + 65) where λ =
1
d

log Norm(π) � 6710

Here λ is the normalizing term. This is quite small since a unit with logarithms of
complex embeddings equal to (45, 45, −155, 65) would correspond to an algebraic
integer with coefficients of about twenty decimal digits. The first four reduction
steps sufficed to eliminate this unit contribution (i.e. equalling the logarithms
of the complex embeddings with their average). After 2, 000 reduction steps,
we obtained a complete product formula for the root, the remaining e-th power
being −1. It took five minutes to compute this e-th root.

10 Best amongst a set of 1, 000 candidates.
11 2.667 GHz Intel Core-2 cpu.
12 2.667 GHz Intel Core-2.

When e-th Roots Become Easier Than Factoring 27

The corresponding final multiplicative dependency involved 242, 700 integers
of the form c + xi mod n.

B Example of an e-th Root Computation

As an experimental illustration of the arbitrary e-th root computation, we used
once again n = rsa-155. For a public exponent e = 65, 537, we detail the
computation of an arbitrary e-th root given access to a preliminary e-th root
oracle (the attacker is given the challenge only once all oracle queries have been
performed).

We have chosen a setup resembling a typical nfs factoring experiment or a
computation of discrete logarithms. The polynomials f1 =

∑
aix

i and f2 =∑
bix

i are given by the following coefficients, the polynomial f2 corresponding
to a rational side:

a5 = 28200000

a4 = - 7229989539851

a3 = - 24220733860168568962

a2 = - 6401736489600175386662132

a1 = 4117850270472750057831223534880

a0 = 747474581145576370776244346990929200

b1 = 14507315380338583

b0 = - 207858336487818193824240150287

These two polynomials are easily seen to share a common root P modulo n.
The sieving stage has been performed only on the number field side. We

chose as a small factor base the set of prime ideals of norm below B = 4 × 106

(i.e. 283,042 ideals). For the sieving, we have used the lattice sieving program
lasieve4 of J. Franke and T. Kleinjung included in the ggnfs software suite.
The program was modified to sieve only on one side. Using a double large prime
variation, the sieving step has been completed in two cpu hours on a 2.4GHz
amd Opteron.

We then extended the factor base to the larger bound B′ = 232. After 44
cpu hours, we were able to relate 37% of the ideals of this larger factor base to
ideals of the smaller factor base (the larger factor base comprises approximately
2 × 108 ideals).

Counting oracle queries related to both sides, we need to perform 4 × 108

queries before being able to compute arbitrary e-th roots.
We have implemented the descent procedure using Magma, as well as the

lasieve4 program, modified in order to account for very large special q’s as
used in the descent process. The factorization of the numerous sieve residues
produced was handled by the gmp-ecm program.

The descent was initialized on the rational side. We obtained integers u and
v which factored into primes with at most 35 decimal digits. Each step of the
descent procedure involved a lasieve4 call, in order to select several candidate

28 A. Joux, D. Naccache, and E. Thomé

polynomials. Amongst the possible polynomials, our strategy selected the one
leading to the fewest ideals outside the factor base (taking into account the large
ideals coming from the factor base extension). After 42 descent steps, we obtained
a product formula involving 594 prime numbers and ideals below B′ = 232. Some
(19) ideals in this product formula belonged to the set of “missed” ideals from
the larger factor base. With 21 extra descent steps, these ideals were eliminated.
The descent procedure took roughly one hour.

The schedule time for solving the resulting inhomogeneous linear system and
computing the algebraic e-th root compares in every respect to the data given
for the previous example (Appendix a).

	When e-th Roots Become Easier Than Factoring
	Introduction
	The Strategy -- A General Outline
	A Detailed Step-by-Step Description
	Polynomial Construction
	Sieving
	Linear Algebra and Characters
	Root Extraction
	Complexity Analysis

	Attacking the One More $\sc rsa$ Inversion Problem
	The Inversion Algorithm
	Complexity Analysis
	Computing e-th Roots with an $\sc amr$-Oracle

	Implementation Details
	Example of an e-th Root Computation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

