Abstract
We present six multiparty protocols with information- theoretic security that tolerate an arbitrary number of corrupt participants. All protocols assume pairwise authentic private channels and a broadcast channel (in a single case, we require a simultaneous broadcast channel). We give protocols for veto, vote, anonymous bit transmission, collision detection, notification and anonymous message transmission. Not assuming an honest majority, in most cases, a single corrupt participant can make the protocol abort. All protocols achieve functionality never obtained before without the use of either computational assumptions or of an honest majority.
Chapter PDF
Similar content being viewed by others
Keywords
References
Adida, B., Neff, C.A.: Ballot casting assurance. In: EVT 2006. Proceedings of the First Usenix/ACCURATE Electronic Voting Technology Workshop (2006)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the twentieth annual ACM Symposium on Theory of Computing (STOC), pp. 1–10. ACM Press, New York (1988)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the twentieth annual ACM Symposium on Theory of Computing (STOC), pp. 11–19. ACM Press, New York (1988)
Cramer, R., Fehr, S., Padró, C.: Combinatorial codes for detection of algebraic manipulation and their applications. Manuscript (2007)
Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-authority secret ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)
Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS), pp. 383–395 (1985)
Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24, 84–88 (1981)
Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)
Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters for a general access structure. Designs, Codes and Cryptography 25, 175–188 (2002)
Hevia, A., Micciancio, D.: Simultaneous broadcast revisited. In: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, pp. 324–333. ACM Press, New York (2005)
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the twenty-first annual ACM Symposium on Theory of Computing (STOC), pp. 73–85. ACM Press, New York (1989)
Sako, K., Kilian, J.: Receipt-free mix-type voting scheme — a practical solution to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)
Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: Unconditional sender and recipient untraceability with computationally secure serviceability. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, p. 690. Springer, Heidelberg (1990)
Waidner, M., Pfitzmann, B.: Unconditional sender and recipient untraceability in spite of active attacks — some remarks. Technical report, Universität Karlsruhe (1989)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Broadbent, A., Tapp, A. (2007). Information-Theoretic Security Without an Honest Majority. In: Kurosawa, K. (eds) Advances in Cryptology – ASIACRYPT 2007. ASIACRYPT 2007. Lecture Notes in Computer Science, vol 4833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76900-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-76900-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76899-9
Online ISBN: 978-3-540-76900-2
eBook Packages: Computer ScienceComputer Science (R0)