Skip to main content

A UAV Search and Rescue Scenario with Human Body Detection and Geolocalization

  • Conference paper
AI 2007: Advances in Artificial Intelligence (AI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4830))

Included in the following conference series:

Abstract

The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously in dynamic and complex operational environments is becoming increasingly more common. The UAVTech Lab, is pursuing a long term research endeavour related to the development of future aviation systems which try and push the envelope in terms of using and integrating high-level deliberative or AI functionality with traditional reactive and control components in autonomous UAV systems. In order to carry on such research, one requires challenging mission scenarios which force such integration and development. In this paper, one of these challenging emergency services mission scenarios is presented. It involves search and rescue for injured civilians by UAVs. In leg I of the mission, UAVs scan designated areas and try to identify injured civilians. In leg II of the mission, an attempt is made to deliver medical and other supplies to identified victims. We show how far we have come in implementing and executing such a challenging mission in realistic urban scenarios.

This work is supported in part by the National Aeronautics Research Program NFFP04 S4202 and the Swedish Foundation for Strategic Research (SSF) Strategic Research Center MOVIII and a Swedish Research Council grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doherty, P.: Advanced research with autonomous unmanned aerial vehicles. In: Proceedings on the 9th International Conference on Principles of Knowledge Representation and Reasoning (2004)

    Google Scholar 

  2. Doherty, P.: Knowledge representation and unmanned aerial vehicles. In: IAT 2005. Proceedings of the IEEE Conference on Intelligent Agent Technolology (2005)

    Google Scholar 

  3. Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation. In: Proceedings of the International Symposium on Distributed Autonomous Robotic Systems, pp. 221–230 (2004)

    Google Scholar 

  4. Doherty, P., Kvarnström, J.: TALplanner: A temporal logic based planner. Artificial Intelligence Magazine (Fall Issue, 2001)

    Google Scholar 

  5. Doherty, P., Kvarnström, J.: Temporal action logics. In: Lifschitz, V., van Harmelen, F., Porter, F. (eds.) The Handbook of Knowledge Representation, vol. ch.18, Elsevier, Amsterdam (to appear, 2007)

    Google Scholar 

  6. Heintz, F., Doherty, P.: Dyknow: An approach to middleware for knowledge processing. Journal of Intelligent and Fuzzy Systems 15(1), 3–13 (2004)

    Google Scholar 

  7. Heintz, F., Doherty, P.: Dyknow: A knowledge processing middleware framework and its relation to the JDL fusion model. Journal of Intelligent and Fuzzy Systems 17(4) (2006)

    Google Scholar 

  8. Kruppa, H., Castrillon-Santana, M., Schiele, B.: Fast and robust face finding via local context. In: Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (October 2003)

    Google Scholar 

  9. Lienhart, R., Maydt, J.: An Extended Set of Haar-like Features for Rapid Object Detection. In: Proc. of International Conference on Image Processing, pp. 900–903 (2002)

    Google Scholar 

  10. OSCVL. Open Source Computer Vision Library, http://www.intel.com/technology/computing/opencv/

  11. Viola, P., Jones, M.J.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: Proc. of Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  12. Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle. In: Proc. of the 21th Bristol International UAV Systems Conference (2006)

    Google Scholar 

  13. Wzorek, M., Doherty, P.: A framework for reconfigurable path planning for autonomous unmanned aerial vehicles. Journal of Applied Artificial Intelligence (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mehmet A. Orgun John Thornton

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doherty, P., Rudol, P. (2007). A UAV Search and Rescue Scenario with Human Body Detection and Geolocalization. In: Orgun, M.A., Thornton, J. (eds) AI 2007: Advances in Artificial Intelligence. AI 2007. Lecture Notes in Computer Science(), vol 4830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76928-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76928-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76926-2

  • Online ISBN: 978-3-540-76928-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics