Abstract
Ovarian cancer is a primary gynecological cancer which pathological stages include benign, borderline and invasive stages cause death in many countries. In this paper, linear regression, analysis of variance (ANOVA) and support vector machine (SVM) are used to identify the gene markers of ovarian cancer for an authentic cDNA expression datasets among 8 normal ovarian tumors, 6 borderline of cancers, 7 ovarian cancer at stage I and 9 ovarian cancer at stage III samples. First, the linear regression analysis obtains 200 useful genes with largest residuals. Further select 14 genes by ANOVA and Scheffe when P-value is less than 0.000005. Then, we use support vector machine to classify the pathological stages by gene expressions. Five experiments are performed with clustering conditions. In the first clustering experiment, the cluster 1 includes BOT, and other pathological stages are in cluster 2. They have significant differences at BOT stage and can get average accuracy about 95.686% in cross-validation. It is quite precise for classifying pathological stages by gene expressions. The average accuracy of all clustering experiments is about 88.541% in cross-validation. Besides, we also develop a statistical analysis system including linear regression and ANOVA function for gene expression analysis. The experimental results and our analysis system can assist biologists and doctors to research and diagnose ovarian cancer by gene expressions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jemal, A., Thomas, A., Murray, T., Thun, M.: Cancer statistics 2002. CA Cancer J. Clin. 52, 23–47 (2002)
Huang, G.-S., Hung, Y.-C., Chen, A., Hong, M.-Y.: Microarray analysis of ovarian cancer. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1036–1041 (2005)
Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)
Alizadeh, A.A., Eisen, M.B., Davis, R.E., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)
DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A., Trent, J.M.: Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat. Genet. 14, 457–460 (1996)
Schummer, M., Ng, W.V., Bumgarner, R.E., Nelson, P.S., Schummer, B., Ednarski, D.W., Hassell, L., Baldwin, R.L., Karlan, B.Y., Hood, L.: Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 238, 375–385 (1999)
Wang, K., Gan, L., Jeffery, E., Gayle, M., Gown, A.M., Skelly, M., Nelson, P.S., Ng, W.V., Schummer, M., Hood, L., Mulligan, J.: Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229, 101–108 (1999)
Ismail, R.S., Baldwin, R.L., Fang, J., Browning, D., Karlan, B.Y., Gasson, J.C., Chang, D.D.: Differential gene expression between normal and tumor-derived ovarian epithelial cells. Cancer Res. 60, 6744–6749 (2000)
Martoglio, A.M., Tom, B.D., Starkey, M., Corps, A.N., Charnock-Jones, D.S., Smith, S.K.: Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol. Med. 6, 750–765 (2000)
Ono, K., Tanaka, T., Tsunoda, T., Kitahara, O., Kihara, C., Okamoto, A., Ochiai, K.: Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res. 60, 5007–5011 (2000)
Welsh, J.B., Zarrinkar, P.P., Sapinoso, L.M., Kern, S.G., Behling, C.A., Monk, B.J., Lockhart, D.J., Burger, R.A., Hampton, G.M.: Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181 (2001)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)
Yang, S.Z., Eltoum, I.A., Abdulkadir, S.A.: Enhanced EGR1 activity promotes the growth of prostate cancer cells in an androgen-depleted environment. J. Cell Biochem. 97, 1292–1299 (2006)
Jeng, J.-T., Lee, T.-T., Lee, Y.-C.: Classification of ovarian cancer based on intelligent systems with microarray data. IEEE International Conference on Systems, Man and Cybernetics 2, 1053–1058 (2005)
Yemelyanov, A., Czwornog, J., Chebotaev, D., Karseladze, A., Kulevitch, E., Yang, X., Budunova, I.: Tumor suppressor activity of glucocorticoid receptor in the prostate. Oncogene, pp. 1885–1896 (2006)
Ustach, C.V., Kim, H.R.: Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol. Cell Biol. 24, 6279–6288 (2005)
Watermann, I., Gerspach, J., Lehne, M., Seufert, J., Schneider, B., Pfizenmaier, K., Wajant, H.: Activation of CD95L fusion protein prodrugs by tumor-associated proteases. Cell Death Differ 14, 765–774 (2007)
Vanharanta, S., Wortham, N.C., Arola, J., Tomlinson, I.P., Karhu, A., Arango, D., Aaltonen, L.A.: 7q deletion mapping and expression profiling in uterine fibroids. Oncogene, 6545–6554 (2005)
Hanauske, A.R.: Translational research with pemetrexed in breast cancer. Oncology 18, 66–69 (2004)
Morales, C., Ribas, M., Aiza, G., Peinado, M.A.: Genetic determinants of methotrexate responsiveness and resistance in colon cancer cells. Oncogene, 6842–6847 (2005)
Yu, J., Baron, V., Mercola, D., Mustelin, T., Adamson, E.D.: A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ, 436–446 (2007)
Selvamurugan, N., Kwok, S., Partridge, N.C.: Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J. Biol. Chem. 279, 27764–27773 (2004)
Edwards, A.L.: An Introduction to Linear Regression and Correlation. W. H. Freeman, San Francisco, CA (1976)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsai, MH., Chang, JD., Chiu, SH., Lai, CH. (2007). Identification of Marker Genes Discriminating the Pathological Stages in Ovarian Carcinoma by Using Support Vector Machine and Systems Biology. In: Randall, M., Abbass, H.A., Wiles, J. (eds) Progress in Artificial Life. ACAL 2007. Lecture Notes in Computer Science(), vol 4828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76931-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-76931-6_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76930-9
Online ISBN: 978-3-540-76931-6
eBook Packages: Computer ScienceComputer Science (R0)