Skip to main content

Identification of Marker Genes Discriminating the Pathological Stages in Ovarian Carcinoma by Using Support Vector Machine and Systems Biology

  • Conference paper
Progress in Artificial Life (ACAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4828))

Included in the following conference series:

  • 808 Accesses

Abstract

Ovarian cancer is a primary gynecological cancer which pathological stages include benign, borderline and invasive stages cause death in many countries. In this paper, linear regression, analysis of variance (ANOVA) and support vector machine (SVM) are used to identify the gene markers of ovarian cancer for an authentic cDNA expression datasets among 8 normal ovarian tumors, 6 borderline of cancers, 7 ovarian cancer at stage I and 9 ovarian cancer at stage III samples. First, the linear regression analysis obtains 200 useful genes with largest residuals. Further select 14 genes by ANOVA and Scheffe when P-value is less than 0.000005. Then, we use support vector machine to classify the pathological stages by gene expressions. Five experiments are performed with clustering conditions. In the first clustering experiment, the cluster 1 includes BOT, and other pathological stages are in cluster 2. They have significant differences at BOT stage and can get average accuracy about 95.686% in cross-validation. It is quite precise for classifying pathological stages by gene expressions. The average accuracy of all clustering experiments is about 88.541% in cross-validation. Besides, we also develop a statistical analysis system including linear regression and ANOVA function for gene expression analysis. The experimental results and our analysis system can assist biologists and doctors to research and diagnose ovarian cancer by gene expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jemal, A., Thomas, A., Murray, T., Thun, M.: Cancer statistics 2002. CA Cancer J. Clin. 52, 23–47 (2002)

    Article  Google Scholar 

  2. Website: http://www.healthandenvironment.org/ovarian_cancer

  3. Huang, G.-S., Hung, Y.-C., Chen, A., Hong, M.-Y.: Microarray analysis of ovarian cancer. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1036–1041 (2005)

    Google Scholar 

  4. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  5. Alizadeh, A.A., Eisen, M.B., Davis, R.E., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  6. DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A., Trent, J.M.: Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat. Genet. 14, 457–460 (1996)

    Article  Google Scholar 

  7. Schummer, M., Ng, W.V., Bumgarner, R.E., Nelson, P.S., Schummer, B., Ednarski, D.W., Hassell, L., Baldwin, R.L., Karlan, B.Y., Hood, L.: Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 238, 375–385 (1999)

    Article  Google Scholar 

  8. Wang, K., Gan, L., Jeffery, E., Gayle, M., Gown, A.M., Skelly, M., Nelson, P.S., Ng, W.V., Schummer, M., Hood, L., Mulligan, J.: Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229, 101–108 (1999)

    Article  Google Scholar 

  9. Ismail, R.S., Baldwin, R.L., Fang, J., Browning, D., Karlan, B.Y., Gasson, J.C., Chang, D.D.: Differential gene expression between normal and tumor-derived ovarian epithelial cells. Cancer Res. 60, 6744–6749 (2000)

    Google Scholar 

  10. Martoglio, A.M., Tom, B.D., Starkey, M., Corps, A.N., Charnock-Jones, D.S., Smith, S.K.: Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol. Med. 6, 750–765 (2000)

    Google Scholar 

  11. Ono, K., Tanaka, T., Tsunoda, T., Kitahara, O., Kihara, C., Okamoto, A., Ochiai, K.: Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res. 60, 5007–5011 (2000)

    Google Scholar 

  12. Welsh, J.B., Zarrinkar, P.P., Sapinoso, L.M., Kern, S.G., Behling, C.A., Monk, B.J., Lockhart, D.J., Burger, R.A., Hampton, G.M.: Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181 (2001)

    Article  Google Scholar 

  13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  14. Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)

    MATH  Google Scholar 

  15. Yang, S.Z., Eltoum, I.A., Abdulkadir, S.A.: Enhanced EGR1 activity promotes the growth of prostate cancer cells in an androgen-depleted environment. J. Cell Biochem. 97, 1292–1299 (2006)

    Article  Google Scholar 

  16. Jeng, J.-T., Lee, T.-T., Lee, Y.-C.: Classification of ovarian cancer based on intelligent systems with microarray data. IEEE International Conference on Systems, Man and Cybernetics 2, 1053–1058 (2005)

    Article  Google Scholar 

  17. Yemelyanov, A., Czwornog, J., Chebotaev, D., Karseladze, A., Kulevitch, E., Yang, X., Budunova, I.: Tumor suppressor activity of glucocorticoid receptor in the prostate. Oncogene, pp. 1885–1896 (2006)

    Google Scholar 

  18. Ustach, C.V., Kim, H.R.: Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol. Cell Biol. 24, 6279–6288 (2005)

    Article  Google Scholar 

  19. Watermann, I., Gerspach, J., Lehne, M., Seufert, J., Schneider, B., Pfizenmaier, K., Wajant, H.: Activation of CD95L fusion protein prodrugs by tumor-associated proteases. Cell Death Differ 14, 765–774 (2007)

    Article  Google Scholar 

  20. Vanharanta, S., Wortham, N.C., Arola, J., Tomlinson, I.P., Karhu, A., Arango, D., Aaltonen, L.A.: 7q deletion mapping and expression profiling in uterine fibroids. Oncogene, 6545–6554 (2005)

    Google Scholar 

  21. Hanauske, A.R.: Translational research with pemetrexed in breast cancer. Oncology 18, 66–69 (2004)

    Article  Google Scholar 

  22. Morales, C., Ribas, M., Aiza, G., Peinado, M.A.: Genetic determinants of methotrexate responsiveness and resistance in colon cancer cells. Oncogene, 6842–6847 (2005)

    Google Scholar 

  23. Yu, J., Baron, V., Mercola, D., Mustelin, T., Adamson, E.D.: A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ, 436–446 (2007)

    Google Scholar 

  24. Selvamurugan, N., Kwok, S., Partridge, N.C.: Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J. Biol. Chem. 279, 27764–27773 (2004)

    Article  Google Scholar 

  25. Edwards, A.L.: An Introduction to Linear Regression and Correlation. W. H. Freeman, San Francisco, CA (1976)

    Google Scholar 

  26. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcus Randall Hussein A. Abbass Janet Wiles

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsai, MH., Chang, JD., Chiu, SH., Lai, CH. (2007). Identification of Marker Genes Discriminating the Pathological Stages in Ovarian Carcinoma by Using Support Vector Machine and Systems Biology. In: Randall, M., Abbass, H.A., Wiles, J. (eds) Progress in Artificial Life. ACAL 2007. Lecture Notes in Computer Science(), vol 4828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76931-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76931-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76930-9

  • Online ISBN: 978-3-540-76931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics