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Local Partitioning for Directed
Graphs Using PageRank
Reid Andersen, Fan Chung, and Kevin Lang

Abstract. A local partitioning algorithm finds a set with small conductance near a
specified seed vertex. In this paper, we present a generalization of a local partitioning
algorithm for undirected graphs to strongly connected directed graphs. In particular,
we prove that by computing a personalized PageRank vector in a directed graph, start-
ing from a single seed vertex within a set S that has conductance at most α, and by
performing a sweep over that vector, we can obtain a set of vertices S′ with conduc-
tance ΦM (S′) = O(

√
α log |S|). Here, the conductance function ΦM is defined in terms

of the stationary distribution of a random walk in the directed graph. In addition,
we describe how this algorithm may be applied to the PageRank Markov chain of an
arbitrary directed graph, which provides a way to partition directed graphs that are
not strongly connected.

1. Introduction

In directed networks like the World Wide Web, it is critical to develop algorithms
that utilize the additional information conveyed by the direction of the links.
Algorithms for web crawling, web mining, and search ranking all depend heavily
on the directedness of the graph. For the problem of graph partitioning, it is
extremely challenging to develop algorithms that effectively utilize the directed
links.

Spectral algorithms for graph partitioning have natural obstacles for gener-
alizations to directed graphs. Nonsymmetric matrices do not have a spectral
decomposition, meaning that there does not necessarily exist an orthonormal
basis of eigenvectors. The stationary distribution for random walks on directed
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4 Internet Mathematics

graphs is no longer determined by the degree sequences. In the earlier work of
Fill [Fill 91] and Mihail [Mihail 89], several generalizations for directed graphs
were examined for regular graphs. Lovász and Simonovits established a bound
for the mixing rate of an asymmetric ergodic Markov chain in terms of its con-
ductance [Lovász and Simonovits 90]. When applied to the Markov chain of a
random walk in a strongly connected directed graph, their results can be used to
identify a set of states of the Markov chain with small conductance. Algorithms
for finding sparse cuts, based on linear and semidefinite programming and met-
ric embeddings, have also been generalized to directed graphs [Charikar et al.
06, Chuzhoy and Khanna 06]. A Cheeger inequality for directed graphs that
relies on the eigenvalues of a normalized Laplacian for directed graphs can also
be used to find cuts of small conductance [Chung 05].

This paper is concerned with a different type of partitioning algorithm, called
a local partitioning algorithm. A local partitioning algorithm finds a set with
small conductance near a specified seed vertex, and can produce such a cut by
examining only a small portion of the input graph. In a recent paper, the au-
thors introduced a local partitioning algorithm, for undirected graphs, that finds
a cut with small conductance by performing a sweep over a personalized Page-
Rank vector. Personalized PageRank traditionally has been applied and studied
in directed web graphs, so it is natural to ask whether this local partitioning
algorithm can be generalized to find sets with small conductance in a directed
graph by sweeping over a personalized PageRank vector computed in a directed
graph.

In this paper, we generalize the basic local partitioning results from [An-
dersen et al. 06] to strongly connected directed graphs. We prove that by
computing a personalized PageRank vector in a directed graph, and sorting
the vertices of the graph according to their probability in this vector divided
by their probability in the stationary distribution, we can identify a set with
small conductance, where the notion of conductance must be generalized ap-
propriately. Directed graphs that arise in practice are typically not strongly
connected, and this generalized local partitioning algorithm cannot be applied
directly to such a graph. We address this problem by describing how our al-
gorithm may be applied to the PageRank Markov chain of a directed graph,
which is ergodic even when the underlying graph is not strongly connected.
When applied to the PageRank Markov chain, the generalized local partition-
ing algorithm has a natural interpretation: we compute a personalized Page-
Rank vector with a single starting vertex, and a global PageRank vector with a
uniform starting vector, and sort the vertices of the graph according to the
ratio of their entries in the personalized PageRank vector and global Page-
Rank vector. We prove that by sorting the vertices of the graph according
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to this ratio, our algorithm finds a set with small conductance in the PageRank
Markov chain. We also show that the required computation can be carried out
efficiently.

The generalized local partitioning algorithm has advantages and disadvantages
when compared to the undirected algorithm. One advantage is that our algo-
rithm follows outlinks exclusively, and does not travel backward over inlinks.
This ensures that all the vertices in the resulting cut are reachable from the
starting vertex, and is particularly useful in settings where outlinks are more
easily accessible than inlinks. One disadvantage is that the appropriate general-
ization of conductance to directed graphs requires reweighting the edges of the
graph according to the amount of probability moving over them in the station-
ary distribution π of a random walk, which is more complicated in a directed
graph than in the undirected case. The generalized local partitioning algorithm
is guaranteed to find a cut for which the total weight of outlinks crossing the cut
is small, but this weight depends on π, and the cut may have a large number of
outlinks with small weight.

Here is an outline of the paper. In the next section, we define the generaliza-
tions of the key ingredients of the local partitioning algorithm from [Andersen
et al. 06] to strongly connected directed graphs, including personalized Page-
Rank, conductance, sweeps, and the Lovász–Simonovits potential function. In
the main section, we prove a generalization of our basic local partitioning results
to strongly connected directed graphs. We prove that a sweep over a personalized
PageRank vector in the directed graph produces a set with small conductance.
In Section 6, we describe how to apply our algorithm to the PageRank matrix of
an arbitrary directed graph, which is always strongly connected. We will show
that our local algorithm can find sets with small conductance by computing per-
sonalized PageRank vectors in the original directed graph, provided we compute
two global PageRank vectors offline.

2. Preliminaries

Let G be a directed graph consisting of a vertex set V and a set of directed
edges E, each of which is an ordered pair (u, v) of vertices from V . Let n be the
number of vertices, and m the number of directed edges. We write dout(v) for
the out-degree of a vertex v.

Let v1, . . . , vn be a fixed (arbitrary) ordering of the vertices. The adjacency
matrix A = A(G) is the n × n matrix in which Ai,j = 1 if there is a directed
edge (vi, vj), and zero otherwise. The out-degree matrix D = D(G) is the n× n

diagonal matrix in which Di,i = dout(vi).
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For a given directed graph, we will consider several different Markov chains.
For our purposes, a Markov chainM is the matrix of a random walk on a weighted
directed graph on the vertex set V . Equivalently, it is an n×n probability matrix
for which the sum of each row is 1. A Markov chain is said to be ergodic if the
corresponding random walk converges to a unique stationary distribution, that
is, if there exists a vector π that is nonzero at each vertex that satisfies π = πM

and such that for every vertex v in V, we have limt→∞ 1vM t = π. The vector π
is the stationary distribution of M . We remark that a Markov chain is ergodic
if and only if it is a random walk on a graph that is strongly connected and
aperiodic. Efficient numerical methods for computing the stationary distribution
of an ergodic Markov chain M are described in [Stewart 97].

Let p be a probability distribution on the vertices of V , and let M be a Markov
chain. For each set S ⊆ V , we define the sum of p over S to be

p(S) =
∑
u∈S

p(u).

For each edge (u, v), we define

p(u, v) = p(u)M(u, v).

This is the amount of probability that moves from u to v when a step of the
Markov chain is applied to the vector p. For each set A of directed edges, we
define

p(A) =
∑

(u,v)∈A
p(u, v),

which is the total amount of probability moving over the set of directed edges.
This notation is overloaded, but it is unambiguous if the type of input is known.

2.1. Conductance and Sweeps

We now assume that the Markov chain M is ergodic with a unique stationary
distribution π, and define the generalizations to ergodic Markov chains of con-
ductance, of the sweep procedure for finding cuts with small conductance (which
is often used in spectral partitioning [Chung 97, Spielman and Teng 96]), and of
the potential function p[x] (which was introduced by Lovász and Simonovits to
bound the mixing rate of random walks). In the case of ergodic Markov chains,
all of these are normalized by the stationary distribution π.

Given a set S of states, we define π̄(S) = min(π(S), 1−π(S)) to be the measure
of the smaller side of the partition induced by S, and define the outgoing edge
border ∂(S) as follows:

∂(S) = {(u, v) ∈ E | u ∈ S and v ∈ S̄}.
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Definition 2.1. Let M be an ergodic Markov chain, and let π be its unique stationary
distribution. We define the M -conductance ΦM (S) of a set of vertices S to be

ΦM (S) =
π(∂(S))
π̄(S)

.

Definition 2.2. Let M be an ergodic Markov chain with stationary distribution π,
and let p be a probability distribution on the vertices. Let v1, . . . , vn be an
ordering of the vertices such that

p(vi)
π(vi)

≥ p(vi+1)
π(vi+1)

.

For each integer j in {1, . . . , n}, we define Spj = {v1, . . . , vj} to be the set con-
taining the top j vertices in this ordering. We define ΦM (p) to be the smallest
M -conductance among the sets Sp1 , . . . , S

p
n,

ΦM (p) = min
j∈[1,n]

ΦM (Spj ).

The process of sorting the vertices according to this ordering and choosing the
set of smallest M -conductance is called a sweep.

Definition 2.3. Let M be an ergodic Markov chain with stationary distribution π,
and let p be a probability distribution on the vertices. We define p [x] to be the
unique function from [0, 1] to [0, 1] such that

p
[
π(Spj )

]
= p(Spj ) for each j ∈ [0, n]

and such that p [x] is piecewise linear between these points.

Proposition 2.4. We have the following facts about the function p [x]:

1. The function p [x] is concave.

2. For any set S of vertices,
p(S) ≤ p [π(S)] .

3. For any set of directed edges A, we have

p(A) ≤ p [π(A)] .

The facts in this proposition are proved in [Lovász and Simonovits 90] and are
not difficult to verify.
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2.2. Global PageRank and Personalized PageRank

Definition 2.5. Given a Markov chain M , the PageRank vector prM (α, s), defined
by Brin and Page [Page et al. 98], is the unique solution of the linear system

prM (α, s) = αs+ (1 − α)prM (α, s)M. (2.1)

Here, α is a constant in (0, 1] called the jump probability and s is a probability
distribution called the starting vector.

We will use the following basic facts about PageRank.

Proposition 2.6. For any Markov chain M , starting vector s, and jump probability
α ∈ (0, 1], there is a unique vector prM (α, s) satisfying

prM (α, s) = αs+ (1 − α)prM (α, s)M.

Proposition 2.7. For any Markov chain M and any fixed value of α in (0, 1], there
is a linear transformation Rα such that prM (α, s) = sRα. Furthermore, Rα is
given by the matrix

Rα = αI + α

∞∑
t=1

(1 − α)tM t. (2.2)

We omit the proofs of these facts, which may be found in [Jeh and Widom
03].

We let ψ = 1
n1V be the uniform distribution. If a PageRank vector has ψ for its

starting vector, we call it a global PageRank vector. If a PageRank vector has for
its starting vector the indicator vector 1v, with all probability on a single vertex
v, we call it a personalized PageRank vector and use the shorthand notation
prM (α, v) = prM (α, 1v).

There are abundant algorithms for computing global PageRank and person-
alized PageRank, so we will treat the computation of PageRank as a primitive
operation. We assume that we have the following two black-box algorithms:

• GlobalPR(M,α) computes the global PageRank vector prM (α, ψ).

• LocalPR(M,α, v) computes the personalized PageRank vector prM (α, v).

We make the distinction between these two black boxes because personalized
PageRank can be computed more efficiently than global PageRank. One may
use for LocalPR any of the algorithms described in [Jeh and Widom 03, Berkhin
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06, Sarlós et al. 06, Gleich and Polito 07], each of which can compute an ap-
proximation of the personalized PageRank vector prM (α, v) by examining only
a small fraction of the input graph near v, provided that M is a sparse ma-
trix. The global PageRank can be computed efficiently in numerous ways, for
example the Arnoldi method described in [Golub and Greif 06], but this re-
quires performing a computation over the entire graph. We will endeavor to use
LocalPR instead of GlobalPR as much as possible.

3. Local Partitioning for Ergodic Markov Chains

We now state the main theorem of this paper, which shows that a sweep over
a personalized PageRank vector in an ergodic Markov chain M can produce a
set with small M -conductance. This is a natural generalization of the theorem
proved for undirected graphs in [Andersen et al. 06].

Theorem 3.1. Let M be an ergodic Markov chain with stationary distribution π.
Let S be a set of vertices such that π(S) ≤ 1

2 and ΦM (S) ≤ α/16, for some
constant α. If v is a vertex sampled from S according to the probability distri-
bution π(v)/π(S), then with probability at least 1

2 , we have ΦM (prM (α, v)) =
O(
√
α log |S|).

The proof of the theorem is given at the end of this section. Here is the outline
of how we will proceed. Given a personalized PageRank vector p = prM (α, s) in
an ergodic Markov chain M , we place an upper bound on p[x] that depends on α
and Φ(p), and place a lower bound on p[π(S)] that depends on the conductance
of a certain set S near the starting vertex. These upper and lower bounds will be
combined to show that Φ(p) is small. We establish the upper and lower bounds
in the following lemmas.

Lemma 3.2. Let M be an ergodic Markov chain with stationary distribution π, let
p = prM (α, v) be a personalized PageRank vector in M , and let φ = ΦM (p) be
the smallest M -conductance found by the sweep over p. Then

p[x] ≤ x+ αt+
(
1 − φ2

72

)t√
x/π(v) for all x ∈ [0, 1] and all t ≥ 0.

Lemma 3.3. Let M be an ergodic Markov chain with stationary distribution π,
and let S be a set of vertices and v a vertex sampled from S according to the
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probability distribution π(v)/π(S). With probability at least 3/4,

prM (α, v)(S) ≥ 1 − 4
ΦM (S)
α

.

These two lemmas will be proved in Section 7. We use them now to derive the
main theorem.

Proof of Theorem 3.1. Let p = prM (α, v) and let φ = Φ(p). If v is sampled from S

with probability π(v)/π(S), then Lemma 3.3 implies that the following bound
holds with probability at least 3/4:

prM (α, v)(S) ≥ 1 − 4
ΦM (S)
α

≥ 1 − 4
α/16
α

≥ 3
4
. (3.1)

We will now show that with probability at least 3/4,

π(v)
π(S)

≥ 1
4|S| . (3.2)

To see this, consider the set of vertices S′ in S such that π(v) ≥ π(S)
4|S| . Clearly

π(S \ S′) < π(S)/4, which shows that π(S′) > 3
4π(S).

The probability that the two events described in (3.1) and (3.2) both occur is
at least 1/2. We will assume for the rest of the proof that both events hold.

Lemma 3.2 gives us the following upper bound on prM (α, v)(S):

prM (α, v)(S) ≤ prM (α, v)[π(S)]

≤ 4
3
π(S) + αT +

(
1 − φ2

72

)T √
π(S)/π(v)

≤ 4
3

1
2

+ αT +
(

1 − φ2

72

)T √
4|S|.

If we let T = (72/φ2) ln 24
√

4|S|, then

prM (α, v)(S) ≤ 2
3

+ αT +
1
24
.

This contradicts our lower bound from (3.1) if α < 1/25T , so we have shown
that α ≥ 1/25T , which implies the following bound:

φ ≤
√

72 · 25 · α ln 24
√

4|S| = O(
√
α log |S|).
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Algorithm 1. (Applying Theorem 3.1 to the lazy random-walk Markov chain of a strongly connected
graph.)

We are given as input a strongly connected directed graph with lazy
random-walk matrix W. The following procedure may be used to apply
Theorem 3.1 with several different starting vertices and values of α. The offline
preprocessing must be done once, after which the local computation may be
performed as many times as desired.

Offline preprocessing:

1. Compute the stationary distribution π of W.

Local computation:

1. Pick a starting vertex v and a value of α.

2. Compute p = prW (α, v), using LocalPR.

3. Sort the vertices in nonincreasing order of p(x)/π(x).

4. Let Sj be the set of the top j vertices in this ranking.

5. Compute the W-conductance of each set Sp
j , and output the set with the

smallest W-conductance.

4. Partitioning a Strongly Connected Graph

In the next two sections we describe two possible approaches to partitioning a
directed graph. In this section, we describe the straightforward method that
applies only when the directed graph is strongly connected.

If the graph is strongly connected, then we may apply Theorem 3.1 to the lazy
random-walk Markov chain W , which is defined to be

W = W(A) =
1
2
(I + AD−1).

Here, D is the diagonal matrix whose nonzero elements are the out-degrees of
the vertices. The laziness of the walk ensures that W is ergodic whenever A is
strongly connected, which allows us to apply our main theorem to W .

To apply Theorem 3.1 to the lazy random-walk Markov chain W , we must
compute and perform a sweep over a personalized PageRank vector. When per-
forming the sweep, we must know the stationary distribution of W to sort the
vertices into the proper order. The stationary distribution needs to be computed
only once, and afterward we can find numerous cuts by computing a single per-
sonalized PageRank vector per cut. The necessary computation is summarized
in Algorithm 1.
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5. Partitioning the PageRank Markov Chain

The majority of directed graphs that arise in practice are not strongly connected,
so we cannot directly apply the results of the previous section to such a graph.
In this section, we describe how Theorem 3.1 can be applied to the PageRank
Markov chain of an arbitrary graph, which is always ergodic. We show that the
notion of conductance associated with this Markov chain has a natural interpre-
tation in terms of PageRank. We describe how to find a large number of sets with
low conductance in the PageRank Markov chain by performing a small number
(two) of global PageRank computations as a preprocessing step, followed by any
desired number of local computations.

5.1. The PageRank Markov Chain

We now define the PageRank Markov chain Mβ = Mβ(A) in terms of the ad-
jacency matrix A of an arbitrary directed graph. To do so, we first modify the
adjacency matrix by adding a self-loop to each vertex, to ensure that no vertex
has out-degree zero. This ensures that the random-walk matrix W = D−1A is
a Markov chain, where D is the diagonal matrix containing the modified out-
degrees after the self-loops have been added.

Let ψ = 1
n1V be the uniform distribution, and let β be a constant in [0, 1],

which we will call the global jump probability. Recall that the global PageRank
vector prW (β, ψ) is the unique solution of the linear system

prW (β, ψ) = βψ + (1 − β)prW (β, ψ)W. (5.1)

The PageRank Markov chain Mβ is defined to be

Mβ = βKψ + (1 − β)W,

whereKψ = �1Tψ is the dense rank-1 matrix obtained by taking the outer product
of ψ with the all-ones vector. The global PageRank vector prW (β, ψ) is the
stationary distribution of the PageRank Markov chain Mβ. In other words, we
have prW (β, ψ) = prW (β, ψ)Mβ. The PageRank Markov chain Mβ is ergodic
for any value of β ∈ (0, 1].

The notion of conductance associated with the PageRank Markov chain Mβ

has a natural interpretation in terms of the global PageRank vector prW (β, ψ).
To describe this, we will use the shorthand notation prβ = prW (β, ψ) for the
global PageRank, and Φβ(S) = ΦMβ

(S) for the Mβ-conductance. Then, for any
a set of vertices S, we have

Φβ(S) =
prβ(∂(S))

prβ(S)
.
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This quantity can be interpreted as follows: If we choose a vertex x from S with
probability proportional to its PageRank, and then select a new vertex x′ by
performing a single step in the PageRank Markov chain Mβ , then Φβ(S) is the
probability that x′ �∈ S.

5.2. Computing Personalized PageRank in the PageRank Markov Chain

To apply our local partitioning theorem to Mβ, we must compute a personalized
PageRank vector in the Markov chain Mβ . The personalized PageRank vector
prMβ

(α, s) is the unique solution of the linear system

prMβ
(α, s) = αs+ (1 − α)prMβ

(α, s)Mβ.

Although this is a personalized PageRank vector, the Markov chain Mβ is dense
because of its global random jump, so it is not possible to compute prMβ

(α, s)
efficiently using LocalPR(Mβ , α, s). We will show that prMβ

(α, s) can be com-
puted efficiently in another way, by taking a linear combination of a personal-
ized PageRank vector and a global PageRank vector in the random-walk Markov
chain W .

We now present two interpretations of the PageRank vector prMβ
(α, s). By

definition, prMβ
(α, s) is a personalized PageRank vector in the Markov chain

Mβ. It can also be viewed as a PageRank vector in the random-walk Markov
chain W . When viewed as a PageRank vector in W , its starting vector is a
linear combination of the uniform distribution ψ and the starting vector s, and
its jump probability is γ = α+ β − αβ:

prMβ
(α, s) = αs+ (1 − α)prβ (α, s)Mβ

= αs+ (1 − α)βψ + (1 − α)(1 − β)prβ (α, s)W

= γ

(
α

γ
s+

(1 − α)β
γ

ψ

)
+ (1 − γ)prβ (α, s)W

= prW (γ, s′).

Here γ = α+ β − αβ, and s′ = α
γ s+ (1−α)β

γ ψ. Using the fact that a PageRank
vector is a linear function of its starting vector, we can write

prMβ
(α, s) = prW

(
γ,
α

γ
s+

(1 − α)β
ψ

)

=
α

γ
prW (γ, s) +

(1 − α)β
γ

prW (γ, ψ).

In summary, we have taken a personalized PageRank vector prMβ
(α, s) from

the PageRank Markov chain Mβ, and written it as a linear combination of two
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Algorithm 2. (Applying Corollary 5.1 to the PageRank Markov chain.)
We are given as input the adjacency matrix A of a directed graph (not
necessarily strongly connected), the global jump probability β, and the local
jump probability α. The following procedure may be used to apply Theorem 3.1
at several different starting vertices with these fixed values of α and β. The
offline preprocessing must be done once, after which the local computation may
be performed as many times as desired.

Offline preprocessing:
We must compute two global PageRank vectors:

1. Let γ = α+ β − αβ.

2. Let W = W (A) be the random-walk matrix of A.

3. Compute the two global PageRank vectors prβ = prW (β, ψ) and
prγ = prW (γ, ψ) using the algorithm GlobalPR.

Local computation:

1. Pick a starting vertex v.

2. Compute prW (γ, v), using LocalPR.

3. Obtain p = prMβ
(α, v) by taking a linear combination of prW (γ, v) and

prW (γ, ψ),

p = prMβ
(α, v) =

α

γ
prW (γ, v) +

(1 − α)β

γ
prW (γ, ψ).

4. Rank the vertices in nonincreasing order of p(x)/prβ(x).

5. Let Sj be the set of the top j vertices in this ranking.

6. Compute the β-conductances Φβ(Sj) for each set Sj , and output the set with
the smallest β-conductance.

PageRank vectors from the random-walk Markov chain W . One of these is a
personalized PageRank vector in W with starting vector s, and the other is a
global PageRank vector in W with starting distribution ψ.

5.3. Local Partitioning in the PageRank Markov Chain

By applying our main theorem to the PageRank Markov chain, we obtain the fol-
lowing corollary, which shows that a sweep over the PageRank vector prMβ

(α, v)
produces a set with small Mβ-conductance.

Corollary 5.1. Let S be a set of vertices such that prβ(S) ≤ 1
2 and Φβ(S) ≤ α/16,

for some constants α and β. If a vertex v is sampled from S according to the
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probability distribution prβ(v)/prβ(S), then with probability at least 1/2 we have
Φβ(prMβ

(α, v)) = O(
√
α log |S|).

Proof. The corollary is immediate, by applying Theorem 3.1 to the ergodic Markov
chain Mβ.

To carry out the computation required by the corollary, we need to compute
the stationary distribution of Mβ, which is just the global PageRank vector
prW (β, ψ). For each cut we want to find, we also need to compute a personalized
PageRank vector prMβ

(α, v) in the Markov chain Mβ . This can be done by
computing prW (γ, v) and prW (γ, ψ), and then taking a linear combination of
these two PageRank vectors, as described in the previous section. If we fix the
values of α and β, we can compute the two global PageRank vectors prW (β, ψ)
and prW (γ, ψ) ahead of time, and then compute a large number of personalized
PageRank vectors prW (γ, v) using LocalPR. This procedure is summarized in
Algorithm 2.

6. Concluding Remarks

6.1. When Is Partitioning the PageRank Markov Effective?

Corollary 5.1 can be applied to partition the PageRank Markov chain of an
arbitrary directed graph, and to an arbitrary starting vertex. Because it may be
applied to any graph (even the empty graph), the approximation guarantee that
it provides may become vacuous for some graphs and starting vertices. In this
section we will describe this concern in more detail, and give a positive result
that describes when the approximation guarantee provided is strong rather than
vacuous. We caution that this section contains high-level discussion rather than
rigorous proofs.

As we increase β, we increase the probability of the global jump, which ensures
that the β-conductance of every set in the graph is at least roughly β. If we
partition the PageRank Markov chain of a graph with no edges, every subset
of vertices will have conductance roughly β, so the approximation guarantee of
Corollary 5.1 will be vacuous (which is what we should expect when partitioning
a graph with no edges). On the other hand, if we partition the PageRank Markov
chain of an undirected graph, using a very small value of β, the best partitions of
the graph will have β-conductance larger than β, so the approximation guarantee
of Corollary 5.1 will give a meaningful result.

Loosely speaking, we claim that partitioning the PageRank Markov chain Mβ

gives interesting results exactly when there are interesting partitions of the graph
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that have β-conductance larger than β. To provide evidence for this claim, we
separate the β-conductance Φβ(S) into two parts: the contribution Ψβ(S) from
real graph edges in W and the contribution from the random jump. We define

Ψβ(S) =

∑
(u,v)∈S×S̄ prβ(u)W (u, v)

prβ(S)
.

Then Φβ(S) and Ψβ(S) are related by the following equation:

Φβ(S) = (1 − β)Ψβ(S) + β
|S̄|
n
.

It is not hard to see that if a set S has β-conductance significantly larger than
β, our algorithm finds a set S′ for which Ψβ(S′) is nearly as small as Ψβ(S).
In particular, if S is a set of vertices for which Ψβ(S) = Ω(Φβ(S)), and S′ is a
set of vertices for which Φβ(S′) = O(

√
Φβ(S) logn), which is the conductance

guaranteed by Corollary 5.1, then we have

Ψβ(S′) = O(
√

Ψβ(S) logn).

6.2. Cuts from Approximate PageRank Vectors

For the case of undirected graphs, it has been proved that a cut with small con-
ductance can be found efficiently by sweeping over an approximate personalized
PageRank vector. This was proved in [Andersen et al. 06], and requires a careful
error analysis. We remark that a similar error analysis may be carried out for
the directed case, although we have not described such an analysis in this paper.

7. Appendix: Proof of the Mixing Bounds for Personalized PageRank

In this section, we prove upper and lower bounds on the curve p[x] of a PageRank
vector p = prM (α, s).

Lemma 7.1. Let M be an ergodic Markov chain with stationary distribution π, let
p = prM (α, v) be a personalized PageRank vector in M , and let Sj = Spj . For
each j ∈ [1, n− 1], we have

p[π(Sj)] ≤ α

2 − α
s [π(Sj)]

+
(

1 − α

2 − α

)
(p [π(Sj) + π(∂(Sj))] + p [π(Sj) − π(∂(Sj))]) .
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Proof. For any set S of vertices, we define the set of directed edges whose heads
are in S,

in(S) = {(u, v) ∈ E | v ∈ S},
and the set of edges whose tails are in S,

out(S) = {(u, v) ∈ E | u ∈ S}.

The following describes the amount of probability from pM on a set S, in terms of
the amount of probability moving across the edges in the sets in(S) and out(S):

pM(S) = p(in(S))

= p (in(S) ∩ out(S)) + p (in(S) \ out(S))

= p (in(S) ∩ out(S)) + p (in(S) ∪ out(S)) − p(S).

We will now calculate the total measure of the edges in the sets (in(S)∪out(S))
and (in(S)∩out(S)). The following holds because π is the stationary distribution
of M :

π(in(S)) = π(out(S)) = π(S).

It is not hard to observe the following two equalities:

π(in(S) ∪ out(S)) + π(in(S) ∩ out(S)) = 2π(S),

π(in(S) ∪ out(S)) − π(in(S) ∩ out(S)) = 2π(∂(S)).

Solving the system of equations above yields the following:

π (in(S) ∪ out(S)) = π(S) + π(∂(S)),

π (in(S) ∩ out(S)) = π(S) − π(∂(S)).

Now let p = prM (α, s) be a personalized PageRank vector. For any set S of
vertices, we have

p(S) ≤ αs(S) + (1 − α)pM (S)

≤ αs(S) + (1 − α) (p (in(S) ∩ out(S)) + p (in(S) ∪ out(S)) − p(S)) .

By adding the term (1− α)p(S) to both sides and then dividing by 2− α, we
obtain

p(S) ≤ α

2 − α
s(S) +

(
1 − α

2 − α

)(
1
2
p (in(S) ∩ out(S)) +

1
2
p (in(S) ∪ out(S))

)
.
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Now let Sj = Spj , and recall from Proposition 2.4 that p [π(Sj)] = p(Sj) for
any integer j ∈ [0, n], and that for any set of directed edges A, we have the
bound p(A) ≤ p [π(A)]. Therefore, we have

p [π(Sj)] = p(Sj)

=
α

2 − α
s(Sj)

+
(

1 − α

2 − α

)(
1
2
p (in(Sj) ∩ out(Sj)) +

1
2
p (in(Sj) ∪ out(Sj))

)

≤ α

2 − α
s [π(Sj)]

+
(

1 − α

2 − α

)(
1
2
p [π (in(Sj) ∩ out(Sj))] +

1
2
p [π (in(Sj) ∪ out(Sj))]

)

≤ α

2 − α
s [π(Sj)]

+
(

1 − α

2 − α

)(
1
2
p [π(Sj) − π(∂(Sj))] +

1
2
p [π(Sj) + π(∂(Sj))]

)
.

Lemma 7.2. For any ergodic Markov chain M , any starting vector s, any value
α ∈ (0, 1], and any x ∈ [0, 1], we have

prM (α, s) [x] ≤ s [x] .

Proof. If we let p = prM (α, s), then Lemma 7.1 implies that for each j ∈ [1, n−1],

p
[
π(Spj )

] ≤ α

2 − α
s
[
π(Spj )

]
+
(

1 − α

2 − α

)(
1
2
p
[
π(Spj ) − π(∂(Spj ))

]
+

1
2
p
[
π(Spj ) + π(∂(Spj ))

])

≤ α

2 − α
s
[
π(Spj )

]
+
(

1 − α

2 − α

)
p
[
π(Spj )

]
.

The last line follows from the concavity of p [k]. This implies that p
[
π(Spj )

] ≤
s
[
π(Spj )

]
for each j ∈ [1, n− 1]. The same equation then holds for all x ∈ [0, 1],

because s [x] is concave and p [x] is linear between the points π(Spj ) and π(Spj+1).

We now prove the two lemmas we used in Section 3.
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Proof of Lemma 3.2. We define the function

ft(x) = αt+
(

1 − φ2

72

)t√
x/π(v).

We will prove by induction that the following inequality holds for all t ≥ 0:

p [x] ≤ 4
3
x+ ft(x) for all x ∈ [0, 1]. (7.1)

To prove the base case, notice that for any value of x ∈ [0, 1], we have p[x] =
prM (α, v)[x] ≤ 1v[x], by Lemma 7.2. This implies

p [x] ≤ 1v[x] ≤ min(1, x/π(v)) ≤ x+
√
x/π(v),

which implies that (7.1) holds for t = 0.
We now assume that (7.1) holds for t, and prove that it holds for t + 1. For

each j ∈ [0, n], let xj = π(Sp
j ). It suffices to show that (7.1) holds for t + 1 at

the points x0, . . . , xn, because p [x] is piecewise linear between these points, and
ft+1(x) is concave.

The inequality (7.1) for time t+ 1 holds trivially when x = 0, and also when
x ≥ 3/4, so it suffices to consider an arbitrary index j such that j > 1 and
π(Sj) ≤ 3/4. Because π(Sj) ≤ 3/4, we have π̄(Sj) ≥ (1/3)π, and therefore

π(∂(Sj)) = Φ(Sj)π̄(Sj) ≥ 1
3
Φ(Sj)π(Sj) ≥ 1

3
φxj .

We now apply Lemma 7.1:

p [π(Sj)] ≤ α

2 − α
s [π(Sj)]

+
(

1 − α

2 − α

)
(p [π(Sj) − π(∂(Sj))] + p [π(Sj) + π(∂(Sj))])

≤ α

2 − α
+
(

1
2
p [π(Sj) − π(∂(Sj))] +

1
2
p [π(Sj) + π(∂(Sj))]

)

≤ α+
(

1
2
p [xj − (1/3)φxj ] +

1
2
p [xj + (1/3)φxj ]

)
.

The last step above follows from the concavity of p [x] and the fact that π(∂(Sj)) ≥
1
3φxj . We now use the induction assumption that (7.1) holds,
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p [xj ] ≤ α+
1
2

(
4
3
(xj − 1

3
φxj) + ft(xj − 1

3
φxj)

)

+
1
2

(
4
3
(xj +

1
3
φxj) + ft(xj +

1
3
φxj)

)

=
4
3
xj + α+

1
2

(
ft(xj − 1

3
φxj) + ft(xj +

1
3
φxj)

)

≤ 4
3
xj + α+

1
2

(
ft(xj − 1

3
φxj) + ft(xj +

1
3
φxj)

)

=
4
3
xj + α(t+ 1)

+
1
2

(√
xj − 1

3
φxj +

√
xj +

1
3
φxj

)
1√
π(v)

(
1 − φ2

72

)t

.

We now use the fact that for any x ≥ 0 and z ∈ [0, 1],

1
2
(√
x− zx+

√
x+ zx

) ≤ √
x

(
1 − z2

8

)
.

Applying this bound with x = xj and z = 1
3φ, we obtain the following:

p [xj ] ≤ 4
3
x+ α(t+ 1) +

√
xj/π(v)

(
1 − φ2

72

)(
1 − φ2

72

)t

=
4
3
x+ ft+1(xj).

This completes the proof.

Proof of Lemma 3.3. Let πS be the probability distribution described in the statement
of the lemma, the one obtained by sampling a vertex v from the distribution π,
conditioned on the event that v ∈ S.

The amount of probability that moves from S to S̄ in the step from prM (α, πS)
to prM (α, πS)M is equal to [prM (α, πS)](∂(S)), so we have

[prM (α, πS)M ]
(
S̄
) ≤ [prM (α, πS)]

(
S̄
)

+ [prM (α, πS)](∂(S))

≤ [prM (α, πS)]
(
S̄
)

+ prM (α, πS) [π(∂(S))] .

By Lemma 7.2,

prM (α, πS) [π(∂(S))] ≤ πS [π(∂(S))] =
π(∂(S))
π(S)

= ΦM (S).
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We combine this observation with the personalized PageRank equation:

[prM (α, πS)]
(
S̄
)

= [απS + (1 − α)prM (α, πS)M ]
(
S̄
)

= (1 − α)[prM (α, πS)M ]
(
S̄
)

≤ (1 − α)[prM (α, πS)]
(
S̄
)

+ ΦM (S).

This implies the following:

[prM (α, πS)]
(
S̄
) ≤ ΦM (S)

α
.

If we sample a vertex from the distribution πS , then at least three-fourths of the
time, prM (α, 1v)(S̄) is at most four times its expected value of prM (α, πS)(S̄),
and the result follows.
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