Abstract
We present a framework for mining frequent trajectories, which are translated and/or rotated with respect to one another. We then discuss a multiresolution methodology, based on the wavelet transformation, for speeding up the discovery of frequent trajectories. We present experimental results using noisy protein unfolding trajectories and synthetic datasets. Our results demonstrate the effectiveness of the proposed approaches for finding frequent trajectories. A multiresolution mining strategy provides significant mining speed improvements.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. Proc. 20th Int. Conf. Very Large Data Bases (1994)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE (1995)
Cai, Y., Ng, R.: Indexing spatio temporal trajectories with chebyshev polynomials. In: SIGMOD (2004)
Cao, H., Mamoulis, N., Cheung, D.: Mining frequent spatio-temporal sequential patterns. In: Proceedings of the ICDM (2005)
Kuramochi, M., Karypis, G.: Discovering frequent geometric subgraphs. In: 2nd IEEE Conference on Data Mining (ICDM) (2002)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)
Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.L.: Mining, indexing, and querying historical spatiotemporal data. In: Conference on Knowledge Discovery in Data (2004)
Marsico, A., Labudde, D., Sapra, T., Muller, D.J., Schroeder, M.: A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single molecule force spectroscopy. Bioinformatics (2006)
Morimoto, Y.: Mining frequent neighboring class sets in spatial databases. In: Conference on Knowledge Discovery in Data (2001)
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proc. Int. Conf. on Data Engineering (ICDE) (2001)
Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing the positions of continuously moving objects. In: SIGMOD, pp. 331–342 (2000)
Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A multi-resolution clustering approach for very large spatial databases. In: Proceedings of the 24th International Conference on Very Large Databases (1998)
Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-dimensional time-series with support for multiple distance measures. In: SIGKDD 2003 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Andreopoulos, A., Andreopoulos, B., An, A., Wang, X. (2007). Translation and Rotation Invariant Mining of Frequent Trajectories: Application to Protein Unfolding Pathways. In: Washio, T., et al. Emerging Technologies in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77018-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-77018-3_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77016-9
Online ISBN: 978-3-540-77018-3
eBook Packages: Computer ScienceComputer Science (R0)