Skip to main content

GC-Tree: A Fast Online Algorithm for Mining Frequent Closed Itemsets

  • Conference paper
Emerging Technologies in Knowledge Discovery and Data Mining (PAKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4819))

Included in the following conference series:

  • 1545 Accesses

Abstract

Frequent closed itemsets is a complete and condensed representaion for all the frequent itemsets, and it’s important to generate non-redundant association rules. It has been studied extensively in data mining research, but most of them are done based on traditional transaction database environment and thus have performance issue under data stream environment. In this paper, a novel approach is proposed to mining closed frequent itemsets over data streams. It is an online algorithm which update frequent closed itemsets incrementally, and can output the current closed frequent itemsets in real time based on users specified thresholds. The experimental evaluation shows that our proposed method is both time and space efficient, compared with the state of art online frequent closed itemsets algorithm FCI-Stream [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben Yahia, S., Hamrouni, T., Mephu Nguifo, E.: Frequent closed itemset based algorithms: a thorough structural and analytical survey. ACM SIGKDD Explorations Newsletter 8(1), 93–104 (2006)

    Article  Google Scholar 

  2. Lin, C.-H., Chiu, D.-Y., Wu, Y.-H., Chen, A.L.P.: Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window. In: Proc. of SDM Conf. (2005)

    Google Scholar 

  3. Jiang, N., Gruenwald, L.: CFI-Stream: mining closed frequent itemsets in data streams. In: Proc. of KDD Conf., pp. 592–597 (2006)

    Google Scholar 

  4. Lucchese, C., Orlando, S., Perego, R.: DCI Closed: A Fast and Memory Efficient Algorithm to Mine Frequent Closed Itemsets. In: Proc. of FIMI Conf., (2004)

    Google Scholar 

  5. Lucchese, C., Orlando, S., Perego, R.: Fast and Memory Efficient Mining of Frequent Closed Itemsets. IEEE Journal Transactions of Knowledge and Data Engineering (TKDE) 18(1), 21–36 (2006)

    Article  Google Scholar 

  6. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. In: Proc. of KDD Conf., (2003)

    Google Scholar 

  7. Zaki, M.J., Hsiao, C.-J.: CHARM: An Efficient algorithm for closed itemsets mining. In: Proc. of SIAM ICDM Conf. (2002)

    Google Scholar 

  8. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Journal of Knowledge and Data Engineering(KDE) 2(42), 189–222 (2002)

    Article  Google Scholar 

  9. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. Technical Report 01-1, Computer Science Dept., Rensselaer Polytechnic Institute (March 2001)

    Google Scholar 

  10. Lucchese, C., Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: KDCI: a multistrategy algorithm for mining frequent sets. In: Proc. of ICDM Conf., (2003)

    Google Scholar 

  11. Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Adaptive and resource-aware mining of frequent sets. In: Proc. of ICDM Conf., (2002)

    Google Scholar 

  12. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, Springer, Heidelberg (1998)

    Google Scholar 

  13. Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining frequent closed itemsets. In: Proc. of DMKD Conf. (May 2000)

    Google Scholar 

  14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Int’l. Conf. on Very Large Databases (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takashi Washio Zhi-Hua Zhou Joshua Zhexue Huang Xiaohua Hu Jinyan Li Chao Xie Jieyue He Deqing Zou Kuan-Ching Li Mário M. Freire

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J., Li, S. (2007). GC-Tree: A Fast Online Algorithm for Mining Frequent Closed Itemsets. In: Washio, T., et al. Emerging Technologies in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77018-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77018-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77016-9

  • Online ISBN: 978-3-540-77018-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics