Abstract
Cryptographic embedded systems are vulnerable to Differential Power Analysis (DPA). In particular, the S-boxes of a block cipher are known to be the most sensitive parts with respect to this very kind of attack. While many sound countermeasures have been proposed to withstand this weakness, most of them are too costly to be adopted in real-life implementations of cryptographic algorithms. In this paper, we focus on a widely adopted lightweight variation on the well-known Duplication Method. While it is known that this design is vulnerable to higher-order DPA attacks, we show that it can also be efficiently broken by first-order DPA attacks. Finally, we point out ad hoc costless countermeasures that circumvent our attacks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akkar, M.L., Giraud, C.: An Implementation of DES and AES Secure Against Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (1999)
Celler, F., Leedham-Green, C.R., Murray, S.H., Niemeyer, A.C., O’Brien, E.A.: Generating random element of a finite group. Comm. Algebra 23(13), 4931–4948 (1995)
Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Toward Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)
Cooperman, G.: Towards a practical, theoretically sound algorithm for random generation in finite groups (2002)
Golić, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)
Goubin, L., Patarin, J.: DES and Differential Power Analysis – The “Duplication” Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)
Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 291–308. Springer, Heidelberg (2005)
Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 71–77. Springer, Heidelberg (2000)
Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fumaroli, G., Mayer, E., Dubois, R. (2007). First-Order Differential Power Analysis on the Duplication Method. In: Srinathan, K., Rangan, C.P., Yung, M. (eds) Progress in Cryptology – INDOCRYPT 2007. INDOCRYPT 2007. Lecture Notes in Computer Science, vol 4859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77026-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-77026-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77025-1
Online ISBN: 978-3-540-77026-8
eBook Packages: Computer ScienceComputer Science (R0)