Abstract
In this paper, we present a computationally efficient password authenticated key exchange protocol based on quadratic residues. The protocol, called QR-CEKE, is derived from the protocol QR-EKE, a previously published password authenticated key exchange protocol based on quadratic residues. The computational time for the client, however, is significant reduced in the protocol QR-CEKE. In comparison with QR-EKE, the protocol QR-CEKE is more suitable to an imbalanced computing environment where a low-end client device communicates with a powerful server over a broadband network. Based on number-theoretic techniques, we show that the computationally efficient password authenticated key exchange protocol is secure against residue attacks, a special type of off-line dictionary attack against password-authenticated key exchange protocols based on factorization. We also provide a formal security analysis of QR-CEKE under the factoring assumption and the random oracle model.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bao, F.: Security analysis of a password authenticated key exchange protocol. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 208–217. Springer, Heidelberg (2003)
Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)
Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols secure against dictionary attacks. In: Bellovin, S.M., Merritt, M. (eds.) Proc. of the IEEE Symposium on Research in Security and Privacy, Oakland, pp. 72–84 (May 1992)
Catalano, D., Pointcheval, D., Pornin, T.: IPAKE: Isomorphisms for Password-based Authenticated Key Exchange. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (to appear, 2004)
Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 524–542. Springer, Heidelberg (2003)
Jablon, D.: http://www.integritysciences.com
Lucks, S.: Open key exchange: How to defeat dictionary attacks without encrypting public keys. In: Christianson, B., Lomas, M. (eds.) Proc. Security Protocol Workshop. LNCS, vol. 1361, pp. 79–90. Springer, Heidelberg (1997)
MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 599–613. Springer, Heidelberg (2000)
Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
Patel, S.: Number theoretic attacks on secure password schemes. In: IEEE Symposium on Security and Privacy, Oakland, California (May 5-7, 1997)
Zhu, F., Wong, D., Chan, A., Ye, R.: RSA-based password authenticated key exchange for imbalanced wireless networks. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 150–161. Springer, Heidelberg (2002)
Zhang, M.: New approaches to password authenticated key exchange based on RSA. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 230–244. Springer, Heidelberg (2004)
Zhang, M.: Password Authenticated Key exchange using quadratic residues. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 248–262. Springer, Heidelberg (2004)
Zhang, M.: Further analysis of password authenticated key exchange protocol based on RSA for imbalanced wireless networks. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 12–24. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, M. (2007). Computationally-Efficient Password Authenticated Key Exchange Based on Quadratic Residues. In: Srinathan, K., Rangan, C.P., Yung, M. (eds) Progress in Cryptology – INDOCRYPT 2007. INDOCRYPT 2007. Lecture Notes in Computer Science, vol 4859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77026-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-77026-8_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77025-1
Online ISBN: 978-3-540-77026-8
eBook Packages: Computer ScienceComputer Science (R0)