Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4855))

Abstract

We study the question of the existence of non-mitotic sets in NP. We show under various hypotheses that

  • 1-tt-mitoticity and m-mitoticity differ on NP.

  • T-autoreducibility and T-mitoticity differ on NP (this contrasts the situation in the recursion theoretic setting, where Ladner showed that autoreducibility and mitoticity coincide).

  • 2-tt autoreducibility does not imply weak 2-tt-mitoticity.

  • 1-tt-complete sets for NP are nonuniformly m-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M.: Pseudo-random generators and structure of complete degrees. In: IEEE Conference on Computational Complexity, pp. 139–147. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  2. Ambos-Spies, K.: P-mitotic sets. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.) Logic and Machines: Decision Problems and Complexity. LNCS, vol. 171, pp. 1–23. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  3. Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizations over polynomial time computable sets. Theoretical Computer Science 51, 177–204 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beigel, R.: Query-Limited Reducibilities. PhD thesis, Stanford University (1987)

    Google Scholar 

  5. Beigel, R.: Relativized counting classes: Relations among thresholds, parity, mods. Journal of Computer and System Sciences 42, 76–96 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Computational Complexity 2, 1–17 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, L., Hartmanis, J.: On isomorphism and density of NP and other complete sets. SIAM Journal on Computing 6, 305–322 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buhrman, H., Hoene, A., Torenvliet, L.: Splittings, robustness, and structure of complete sets. SIAM Journal on Computing 27, 637–653 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balcazar, J., Mayordomo, E.: A note on genericty and bi-immunity. In: Proceedings of the Tenth Annual IEEE Conference on Computational Complexity, pp. 193–196. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  10. Buhrman, H., Torenvliet, L.: P-selective self-reducible sets: A new characterization of P. Journal of Computer and System Sciences 53, 210–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boneh, D., Venkatesan, R.: Rounding in lattices and its cryptographic applications. In: SODA, pp. 675–681 (1997)

    Google Scholar 

  12. Glaßer, C., Pavan, A., Selman, A.L., Zhang, L.: Redundancy in complete sets. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 444–454. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Homer, S.: Structural properties of nondeterministic complete sets. In: Structure in Complexity Theory Conference, pp. 3–10 (1990)

    Google Scholar 

  14. Homer, S.: Structural properties of complete problems for exponential time. In: Selman, A.L., Hemaspaandra, L.A. (eds.) Complexity Theory Retrospective II, pp. 135–153. Springer, New York (1997)

    Chapter  Google Scholar 

  15. Hitchcock, J., Pavan, A.: Comparing reductions to NP-complete sets. Technical Report TR06-039, Electronic Colloquium on Computational Complexity (2006)

    Google Scholar 

  16. Ladner, R.E.: Mitotic recursively enumerable sets. Journal of Symbolic Logic 38(2), 199–211 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time reducibilities. Theoretical Computer Science 1, 103–123 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pavan, A., Selman, A.L.: Separation of NP-completeness notions. SIAM Journal on Computing 31(3), 906–918 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Selman, A.L.: P-selective sets, tally languages, and the behavior of polynomial-time reducibilities on NP. Mathematical Systems Theory 13, 55–65 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Selman, A.L.: Reductions on NP and p-selective sets. Theoretical Computer Science 19, 287–304 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Arvind Sanjiva Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glaßer, C., Selman, A.L., Travers, S., Zhang, L. (2007). Non-mitotic Sets. In: Arvind, V., Prasad, S. (eds) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2007. Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77050-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77050-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77049-7

  • Online ISBN: 978-3-540-77050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics