Skip to main content

Abstract

Given a set S of line segments in the plane, we introduce a new family of partitions of the convex hull of S called segment triangulations of S. The set of faces of such a triangulation is a maximal set of disjoint triangles that cut S at, and only at, their vertices. Surprisingly, several properties of point set triangulations extend to segment triangulations. Thus, the number of their faces is an invariant of S. In the same way, if S is in general position, there exists a unique segment triangulation of S whose faces are inscribable in circles whose interiors do not intersect S. This triangulation, called segment Delaunay triangulation, is dual to the segment Voronoi diagram. The main result of this paper is that the local optimality which characterizes point set Delaunay triangulations [10] extends to segment Delaunay triangulations. A similar result holds for segment triangulations with same topology as the Delaunay one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Aurenhammer, F., Hackl, T.: Pre-triangulations and liftable complexes. In: Proc. 22th Annu. ACM Sympos. Comput. Geom., pp. 282–291 (2006)

    Google Scholar 

  2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, Elsevier Science Publishers B.V, North-Holland, Amsterdam (1998)

    Google Scholar 

  3. Bern, M.W., Eppstein, D.: Mesh generation and optimal triangulation. In: Du, D.-Z., Kwang-Ming Hwang, F. (eds.) Computing in Euclidean Geometry, 2nd edn. Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific (1995)

    Google Scholar 

  4. Boissonnat, J.-D., Yvinec, M.: Géométrie algorithmique. Ediscience international, Paris (1995)

    Google Scholar 

  5. Chew, L.P., Kedem, K.: Placing the largest similar copy of a convex polygon among polygonal obstacles. In: Proc. 5th Annu. ACM Sympos. Comput. Geom., pp. 167–174 (1989)

    Google Scholar 

  6. Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity of polytopes and the planarity of subdivisions. Comput. Geom. Theory Appl. 11, 187–208 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Edelsbrunner, H.: Triangulations and meshes in computational geometry. Acta Numerica, 133–213 (2000)

    Google Scholar 

  8. Everett, H., Lazard, S., Lazard, D., Safey El Din, M.: The voronoi diagram of three lines. In: SCG 2007. Proceedings of the twenty-third annual symposium on Computational geometry, pp. 255–264. ACM Press, New York (2007)

    Chapter  Google Scholar 

  9. Koltum, V., Sharir, M.: Three dimensional euclidean voronoi diagrams of lines with a fixed number of orientations. SIAM J. Comput. 32(3), 616–642 (2003)

    Article  MathSciNet  Google Scholar 

  10. Lawson, C.L.: Software for C 1 surface interpolation. In: Rice, J.R. (ed.) Math. Software III, pp. 161–194. Academic Press, New York (1977)

    Google Scholar 

  11. Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs. Discrete Comput. Geom. 1, 201–217 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mehlhorn, K., Näher, S., Schilz, T., Schirra, S., Seel, M., Seidel, R., Uhrig, C.: Checking geometric programs or verification of geometric structures. In: Proc. 12th Annu. ACM Sympos. Comput. Geom., pp. 159–165 (1996)

    Google Scholar 

  13. Mourrain, B., Técourt, J.-P., Teillaud, M.: On the computation of an arrangement of quadrics in 3d. Comput. Geom. Theory Appl. 30(2), 145–164 (2005)

    MATH  Google Scholar 

  14. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester (1992)

    MATH  Google Scholar 

  15. Rajan, V.T.: Optimality of the Delaunay triangulation in R d. Discrete Comput. Geom. 12, 189–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations - a survey. Discrete Comput. Geom. ( to appear)

    Google Scholar 

  17. Schmitt, D., Spehner, J.-C.: Angular properties of Delaunay diagrams in any dimension. Discrete Comput. Geom. 5, 17–36 (1999)

    Article  MathSciNet  Google Scholar 

  18. Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement of quadrics. Comput. Geom. Theory Appl. 33(1–2), 65–97 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Arvind Sanjiva Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brévilliers, M., Chevallier, N., Schmitt, D. (2007). Triangulations of Line Segment Sets in the Plane. In: Arvind, V., Prasad, S. (eds) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2007. Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77050-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77050-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77049-7

  • Online ISBN: 978-3-540-77050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics