Abstract
The abstraction of cryptographic operations by term algebras, called Dolev-Yao models or symbolic cryptography, is essential in almost all tool- supported methods for proving security protocols. Recently significant progress was made – using two conceptually different approaches – in proving that Dolev-Yao models can be sound with respect to actual cryptographic realizations and security definitions. One such approach is grounded on the notion of simulatability, which constitutes a salient technique of Modern Cryptography with a longstanding history for a variety of different tasks. The other approach strives for the so-called mapping soundness – a more recent technique that is tailored to the soundness of specific security properties in Dolev-Yao models, and that can be established using more compact proofs. Typically, both notions of soundness for similar Dolev-Yao models are established separately in independent papers.
This paper relates the two approaches for the first time. Our main result is that simulatability soundness entails mapping soundness provided that both approaches use the same cryptographic implementation. Hence, future research may well concentrate on simulatability soundness whenever applicable, and resort to mapping soundness in those cases where simulatability soundness constitutes too strong a notion.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Rogaway, P.: Reconciling two views of cryptography: The computational soundness of formal encryption. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000)
Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Cryptographically sound security proofs for basic and public-key Kerberos. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 362–383. Springer, Heidelberg (2006)
Backes, M., Dürmuth, M.: A cryptographically sound Dolev-Yao style security proof of an electronic payment system. In: Proc. 18th IEEE CSFW, pp. 78–93 (2005)
Backes, M., Dürmuth, M., Küsters, R.: On simulatability soundness and mapping soundness of symbolic cryptography. IACR Cryptology ePrint Archive 2007/233 (2007)
Backes, M., Jacobi, C.: Cryptographically sound and machine-assisted verification of security protocols. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 675–686. Springer, Heidelberg (2003)
Backes, M., Pfitzmann, B.: A cryptographically sound security proof of the Needham-Schroeder-Lowe public-key protocol. IEEE Journal on Selected Areas in Communications 22(10), 2075–2086 (2004)
Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style cryptographic library. In: Proc. 17th IEEE CSFW, pp. 204–218 (2004)
Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations (extended abstract). In: Proc. 10th ACM CCS, pp. 220–230 (2003)
Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication within a simulatable cryptographic library. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 271–290. Springer, Heidelberg (2003)
Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability framework for asynchronous systems. Information and Computation. Preprint on IACR ePrint (2004)/082 (2007)
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. 42nd IEEE FOCS, pp. 136–145 (2001)
Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual authentication and key exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)
Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for protocol insecurity with XOR. In: Proc. 18th IEEE LICS, pp. 261–270 (2003)
Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound symbolic secrecy in the presence of hash functions. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer, Heidelberg (2006)
Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer, Heidelberg (2005)
Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)
Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Machines. In: Proc. 19th IEEE CSFW, pp. 309–320 (2006)
Laud, P.: Symmetric encryption in automatic analyses for confidentiality against active adversaries. In: Proc. 25th IEEE SSP, pp. 71–85 (2004)
Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)
Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems. In: Proc. 7th ACM CCS, pp. 245–254 (2000)
Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: Proc. 22nd IEEE SSP, pp. 184–200 (2001)
Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically sound theorem proving. In: Proc. 19th IEEE CSFW, pp. 153–166 (2006)
Yao, A.C.: Theory and applications of trapdoor functions. In: Proc. 23rd IEEE FOCS, pp. 80–91 (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Backes, M., Dürmuth, M., Küsters, R. (2007). On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography. In: Arvind, V., Prasad, S. (eds) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2007. Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77050-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-77050-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77049-7
Online ISBN: 978-3-540-77050-3
eBook Packages: Computer ScienceComputer Science (R0)