
ASAP: A Camera Sensor Network for Situation
Awareness�

Junsuk Shin, Rajnish Kumar, Dushmanta Mohapatra,
Umakishore Ramachandran, and Mostafa Ammar

College of Computing, Georgia Institute of Technology, Atlanta GA, USA
{jshin,rajnish,dmpatra,rama,ammar}@cc.gatech.edu

Abstract. Situation awareness is an important application category
in cyber-physical systems, and distributed video-based surveillance is
a good canonical example of this application class. Such applications
are interactive, dynamic, stream-based, computationally demanding, and
needing real-time or near real-time guarantees. A sense-process-actuate
control loop characterizes the behavior of this application class. ASAP is
a scalable distributed architecture for a multi-modal sensor network that
caters to the needs of this application class. Features of this architecture
include (a) generation of prioritization cues that allow the infrastruc-
ture to pay selective attention to data streams of interest; (b) virtual
sensor abstraction that allows easy integration of multi-modal sensing
capabilities; and (c) dynamic redirection of sensor sources to distributed
resources to deal with sudden burstiness in the application. In both em-
pirical and emulated experiments, ASAP shows that it scales up to a
thousand of sensor nodes (comprised of high bandwidth cameras and
low bandwidth RFID readers), significantly mitigates infrastructure and
cognitive overload, and reduces false negatives and false positives due to
its ability to integrate multi-modal sensing.

1 Introduction

Situation Awareness is both a property and an application class that deals with
recognizing when sensed data could lead to actionable knowledge. However, be-
cause of a huge increase in the amount of sensed data to be handled, providing
situation awareness has become a challenge. With advances in technology, it
is becoming feasible to integrate sophisticated sensing, computing, and com-
munication in a single small footprint sensor platform. This trend is enabling
deployment of powerful sensors of different modalities in a cost-effective manner.
While Moore’s law has held true for predicting the growth of processing power,
the volume of data that applications handle is growing similarly, if not faster.

There are three main challenges posed by data explosion for realizing situa-
tion awareness: overload on the infrastructure, cognitive overload on humans in
the loop, and dramatic increase in false positives and false negatives in identify-
ing threat scenarios. Consider, for example, providing situation awareness in a

� ASAP stands for “Priority Aware Situation Awareness” read backwards.

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 31–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

32 J. Shin et al.

0 200 400 600 800

0
20

40
60

80
10

0
Time(s)

C
P

U
 L

oa
d

(%
)

1 camera
2 cameras
3 cameras
4 cameras

(a)CPU Load

0 200 400 600 800

2
4

6
8

10
12

Time(s)

M
em

or
y

U
sa

ge
 (

M
B

)

1 camera
2 cameras
3 cameras
4 cameras

(b)Memory Usage

Fig. 1. Resource usage in a centralized camera network: cameras produce data at 5 fps
with 320x240 resolution. Image processing happens on a 1.4GHz Pentium processor.

battlefield. It needs complex fusion of contextual knowledge with time-sensitive
sensor data obtained from different sources to derive higher-level inferences. With
an increase in the sensed data, a fighter pilot will need to take more data into
account in decision-making leading to a cognitive overload and an increase in
human errors (false positives and negatives). Also, to process and disseminate
the sensed data, more computational and network resources are needed thus
overloading the infrastructure.

The severity of infrastructure overload is more apparent for camera sensor
networks because image dissemination and processing tasks are very resource
intensive. Consider, for example, a simple surveillance system that does mo-
tion sensing and JPEG encoding/decoding. Figure 1 shows the processing re-
quirements for such a system using a centralized set up: cameras produce data
at 5 frames/second with a 320x240 resolution; image processing happens on a
1.4GHz Pentium processor. The results show that the above centralized setup
cannot scale beyond four cameras (the CPU load is nearly 100%.) If we increase
the video quality (frames/second and resolution), even a high-end computing
resource will be unable to process more than a few cameras.

Clearly, scaling up to a large number of cameras (on the order of 100’s or
1000’s) warrants a distributed architecture. Further, to mitigate the challenges
posed by the data explosion there is a need to add a prioritize step in the control
loop for situation awareness. The ASAP architecture presented in this paper
caters to the sense-process-prioritize-actuate control loop. Adding the prioritize
step is expected to help not only in an effective use of the available resources,
but also to achieve scalability and meet real-time guarantees in the data deluge.

ASAP provides features that are aimed to address the specific challenges posed
by situation awareness application:

– It provides a framework for generating priority cues so that the system (and
humans in the loop) can pay selective attention to specific data streams thus
reducing both the infrastructure and cognitive overload.

– It consists of two logical networks, namely, control and data. The former
generates priority cues and the latter provides processing functions (filtering
and fusion) on the selected data streams. This tiered architecture enables the
physical network consisting of cameras, sensors, and computational resources
to be scaled up or down more easily. Further this logical separation aids in
dealing with sudden burstiness in the sensed environment.

ASAP: A Camera Sensor Network for Situation Awareness 33

– It provides facilities for dynamic redirection of control and data streams
to different computational resources based on the burstiness of the sensed
environment.

– It provides an abstraction, virtual sensor, that allows sensors to operate
multi-modally to reduce the ill effects of false positives and false negatives.

– It integrates hand-held devices (such as iPAQs) to enable flexible delivery of
alerts and information digests.

The unique contributions of our work are as follows: (a) a systematic approach to
help prioritize data streams, (b) a software architecture that ensures scalability
and dynamic resource allocation, and (c) multi-model sensing cues to reduce
false positives and false negatives.

The rest of the paper is organized as follows. Section 2 explores situation
awareness applications to understand their requirements. Section 3 explains the
ASAP architecture and its prioritization strategies. The implementation and
evaluation of ASAP platform are presented in Sections 4 and 5, respectively.
Related work is discussed in Section 6. Section 7 concludes the paper.

2 Understanding ASAP Requirements

2.1 Example Application: Video Based Surveillance

A video-based surveillance system is an attractive solution for threat identifica-
tion and reduction. Cameras are deployed in a distributed fashion; the images
from the cameras are filtered in some application-specific manner, and are fused
together in a form that makes it easy for an end user (human or some program) to
monitor the area. The compute intensive part may analyze multiple camera feeds
from a region to extract higher-level information such as “motion”, “presence
or absence of a human face”, or “presence or absence of any kind of suspicious
activity”. Security personnel can specify a set of security policies that must be
adhered to, e.g. “only specified people are allowed to enter a particular area”,
and the system must continuously ensure that an alert is generated whenever
any breach happens. Similarly, security personnel can do a search on all available
camera streams for an event of interest, e.g. “show me the camera feed where
there is a gas leak”. To support the above two ways of deriving actionable knowl-
edge, the extracted information from camera streams, e.g. motion or number of
faces etc., may be the meta-data of importance for information prioritization.
With a large number of surveillance cameras (e.g. 3K in New York [1] and 400K
in London [2]), it becomes a more interesting issue.

2.2 Application Requirements

Applications such as video-based surveillance are capable of stressing the avail-
able computation and communication infrastructures to their limits. Fusion ap-
plications, as we refer to such applications in this paper have the many common
needs that should be supported by the underlying ASAP platform:

34 J. Shin et al.

C

Camera
Database

Control Network
C

M

Motion
Sensor

C

Z
Sound
Sensor

C

S
Glass Break

Sensor

FIRE

Fire
Alarm

RFID
Reader

Data Network

Sense
(Data)

Process
(Event)

Actuate
(Actionable Knowledge)

Control Network Control Network Data Network

Prioritize
(Filter/Fuse)

Data Network

Fig. 2. Functional view of ASAP Fig. 3. ASAP Software Architecture

1. High Scalability: The system should scale to large number of sensor streams
and user queries. This necessarily means that the system should be designed
to reduce infrastructure overload, cognitive overload, and false positives and
false negatives. False positives refer to the actionable knowledge triggers
generated by the system that turns out to be not really a security threat or
an event of interest. False negatives refer to the security threat situations or
interesting events that are missed by the system.

2. Query vs Policy-based interface: Situation awareness applications need to
support both query- and policy-based user interfaces. A query-based inter-
face will allow users to search streams of interest based on tags or information
associated with the streams. On the other hand, a policy-based interface will
allow users to specify conditions to monitor and to generate alerts based on
the conditions. A set of policies can be specified by a security administrator
to proactively monitor an area. A platform for situation awareness applica-
tions should provide both the query-based and policy-based mechanisms.

3. Heterogeneity and Extensibility: With advances in sensing technologies, it
has become possible to deploy different types of sensors on a large scale
to derive actionable knowledge. Further, since a single type of sensor may
not be sufficient to provide accurate situational knowledge, there is a need
to use different types of sensors to increase the accuracy of event detection.
There is also a need to use different types of sensors, because a single sensing
modality is often not sufficient to provide accurate situational knowledge. For
use in diverse application scenarios, it is imperative that ASAP accommodate
heterogeneity of sensing, while being flexible and extensible.

3 Architecture

Figure 2 shows the logical organization of the ASAP architecture into control and
data network. The control network deals with low-level sensor specific processing
to derive priority cues. These cues in turn are used by the data network to
prioritize the streams and carry out further processing such as filtering and
fusion of streams. It should be emphasized that this logical separation is simply
a convenient vehicle to partition the functionalities of the ASAP architecture.
The two networks are in fact overlaid on the same physical network and share
the computational and sensing resources. For example, low bitrate sensing such
as an RFID tag or a fire alarm are part of the control network. However, a high
bitrate camera sensor while serving the video stream for the data network may
also be used by the control network for discerning motion.

ASAP: A Camera Sensor Network for Situation Awareness 35

Figure 3 shows the software architecture of ASAP: it is a peer-to-peer network
of ASAP agents (AA) that execute on independent nodes of the distributed
system. The software organization in each node consists of two parts: ASAP
Agent (AA) and Sensor Agent (SA). There is one sensor agent per sensor, and
a collection of sensor agents are assigned dynamically to an ASAP agent.

3.1 Sensor Agent

SA provides a virtual sensor abstraction that provides a uniform interface for
incorporating heterogeneous sensing devices as well as to support multi-modal
sensing in an extensible manner. This abstraction allows new sensor types to be
added without requiring any change of the ASAP agent (AA). There is a poten-
tial danger in such a virtualization that some specific capability of a sensor may
get masked from full utilization. To avoid such semantic loss, we have designed
a minimal interface that serves the needs of situation awareness applications.

The virtual sensor abstraction allows the same physical sensor to be used
for providing multiple sensing services. For example, a camera can serve not
only as a video data stream, but also as a motion or a face detection sensor.
Similarly, an SA may even combine multiple physical sensors to provide a multi-
modal sensing capability. Once these different sensing modalities are registered
with ASAP agents, they are displayed as a list of available features that users
can select to construct a query for ASAP platform. ASAP platform uses these
features as control cues for prioritization (see Section 3.2).

3.2 ASAP Agent

As shown in Figure 3, an AA is associated with a set of SAs. The association is
dynamic, and is engineered at runtime in a peer-to-peer fashion among the AAs.
The components of AA are shown in Figure 3.

Query Interface
ASAP agent provides a simple query interface with SQL-like syntax. Clients can
pose an SQL query using control cues as attributes. Different cues can be com-
bined using “AND” and “OR” operators to create multi-modal sensing queries.
Here are some example queries which are self evident as to their intent: 1

1) SELECT images FROM zone("Gate13") WHERE RFIDTag = ‘James’
2) SELECT images FROM zone("any") WHERE FaceRecognition = ‘Alice’
3) SELECT COUNT(Object) FROM zone("Concourse B")

False Positives and Negatives

Figure 2 shows that sensed data leads to events, which when filtered and fused
ultimately leads to actionable knowledge. Unfortunately, individual sensors may
often be unreliable due to environmental conditions (e.g., poor lighting condi-
tions near a camera). Thus it may not always be possible to have high confidence
1 It should be understood that the above queries are just a few examples. The interface

is extensible to support different types of sensors, as well as, dispense both streams
and digests of streams as the query output.

36 J. Shin et al.

in the sensed data; consequently there is a danger that the system may experi-
ence high levels of false negatives and false positives. It is generally recognized
that multi-modal sensors would help reduce the ill effects of false positives and
negatives. The virtual sensor abstraction of ASAP allows multiple sensors to be
fused together and registered as a new sensor. Unlike multi-feature fusion (a la
face recognizer) where features are derived from the same (possibly noisy) image,
multi-sensor fusion uses different sensing modalities. ASAP exploits a quorum
system to make a decision. Even though a majority vote is implemented at the
present time, AA may assign different weights to the different sensors commen-
surate with the error rates of the sensors to make the voting more accurate.

Prioritization Strategies

ASAP needs to continuously extract prioritization cues from all the cameras and
other sensors (control network), and disseminate the selected camera streams
(data network) to interested clients. ASAP extracts information from a sensor
stream by invoking the corresponding SA. Since there may be many SAs regis-
tered at any time, invoking all SAs may be very compute intensive. ASAP needs
to prioritize the invocations of SAs to scale well with the number of sensors. This
leads to the need for priority-aware computation in the control network. Once
a set of SAs that are relevant to client queries are identified, the corresponding
camera feeds need to be disseminated to the clients. If the bandwidth required to
disseminate all streams exceed the available bandwidth near the clients, network
will end up dropping packets. This leads to the need for priority-aware commu-
nication in the data network. Based on these needs, the prioritization strategies
employed by ASAP can be grouped into the following categories: Priority-aware
computation and priority-aware communication.

Priority-aware Computation. The challenge is dynamically determining a set of
SAs among all available SAs that need to be invoked such that overall value
of the derived actionable knowledge (benefit for the application) is maximized.
We use the term Measure of Effectiveness (MOE) to denote this overall benefit.
ASAP currently uses a simple MOE based on clients’ priorities.

The priority of an SA should reflect the amount of possibly “new” information
the SA output may have and its importance to the query in progress. Therefore,
the priority value is dynamic, and it depends on multiple factors, including the
application requirements, and the information already available from other SAs.
In its simplest form, priority assignment can be derived from the priority of the
queries themselves. For instance, given two queries from an application, if the
first query is more important than the second one, the SAs relevant to the first
query will have higher priority compared to the SAs corresponding to the second
query. More importantly, computations do not need to be initiated at all of SAs
since (1) such information extracted from sensed data may not be required by any
AA, and (2) unnecessary computation can degrade overall system performance.
“WHERE” clause in SQL-like query is used to activate a specific sensing task.
If multiple WHERE conditions exist, the lowest computation-intensive task is
initiated first that activates the next task in turn. While it has a trade-off between
latency and overhead, ASAP uses this for the sake of scalability.

ASAP: A Camera Sensor Network for Situation Awareness 37

(a)Axis 207MW (b)RFID Antenna (c)ASAP client on iPAQ

Fig. 4. Testbed building blocks

Priority-aware Communication. The challenge is designing prioritization tech-
niques for communication on data network such that application specific MOE
can be maximized. Questions to be explored here include: how to assign priori-
ties to different data streams and how to adjust their spatial or temporal fidelities
that maximizes the MOE?

In general, the control network packets are given higher priority than data
network packets. Since the control network packets are typically much smaller
than the data network packets, supporting a cluster of SAs with each AA does
not overload the communication infrastructure.

4 Implementation

We have built an ASAP testbed with network cameras and RFID readers for
object tracking based on RFID tags and motion detection. In implementing
ASAP, we had three important goals: (1) platform neutrality for the “box” that
hosts the AA and SA, (2) ability to support a variety of sensors seamlessly (for
e.g., network cameras as well as USB cameras), and (3) extensibility to support
a wide range of handheld devices including iPAQs and cellphones. Consequent
to these implementation goals, we chose Java as the programming language
for realizing the ASAP architecture. Java also provides Java Media Framework
(JMF) API [3] that supports USB cameras on many platforms.

Table 1. Axis 207MW specifications

Specifications

Video Compression Motion JPEG, MPEG-4

Resolutions 15 resolutions up to 1280x1024

Frame Rate Up to 14 fps up to 1280x720, Up to 12 fps in 1280x1024

Wireless interface IEEE 802.11g 6-54 Mbps, IEEE 802.11b 1-11 Mbps

Figure 4 shows the building blocks of our testbed: a network camera, Axis
207MW from Axis Communication [4] and RFID antenna from Alien Technol-
ogy [5]. The key specifications of the network camera are given in Table 1.
Considering iPAQ2 performance, we decided to use motion JPEG with 320x240
2 At the time of writing, our implementation uses an iPAQ and/or a desktop for the

GUI client. We plan to extend the implementation to include a cellphone through
web service in the near future.

38 J. Shin et al.

resolution, 5 fps, and 40 compression. Higher compression value (0–100) corre-
sponds to lower quality and smaller image size. A JPEG frame requires 8–14
KBytes depending on the image content.

ASAP implementation consists of 3 main components: GUI Client, Sensor
Agent, and ASAP Agent. GUI client has a simple interface to send a query.
In a simple query, a user can select from drop-down lists for features such as
RFID tag and motion detection, which tag needs to be tracked, and how many
output streams he/she would like to receive. For a more complicated query such
as tracking based on multiple tags and/or multiple features, SQL query is used.
Then, the query is represented as an XML document and sent to the nearest
ASAP Agent (either through the wired network or wirelessly depending on the
connectivity of the client to the ASAP infrastructure). The client uses a name
server to discover a nearby ASAP agent. In our current implementation, a text
file at a well-known location serves the purpose of a name server. While there
could be a debate about a scalability issue in this kind of naming service, the
deployment of camera surveillance system is usually static, and AA keeps caches
of topology information. Even in the case of dynamic deployment, ASAP can
easily integrate DNS-like service which is not the focus of this work.

4.1 Sensor Agent

Sensor Agent needs to provide as simple as possible interface to alleviate the de-
velopment of different types of sensors. This component requires frequent changes
and updates due to the changes in detection algorithms or addition of sensors.
The development of SA consists of 3 steps. The first step is the development of
sensor functionality. It can be either physical sensor functions such as RFID tag
reading or virtual sensor like motion detection or face recognition. The second
step is the registration of sensor through a uniform interface. A control mes-
sage handler is the last step. ASAP supports rich APIs to ease the second and
third steps, and an application programmer can focus only on the first step. By
having a tiered network architecture, Sensor Agent and ASAP Agent are func-
tionally less dependent upon each other. This makes the ASAP software easy to
understand, maintain, and extend with different sensors types.

The virtual sensor abstraction serves to make implementing new sensor func-
tionality a cinch in ASAP. For e.g., given a camera, if the developer decides
to implement two different functionalities (say, face recognition and motion de-
tection) using the camera, then she would register each as a distinct sensor
agent (SA) with the ASAP agent. This componentization of SAs allows modular
extension to the overall architecture without any central control ensuring the
scalability of the architecture.

For the testbed, we implemented camera, motion, and RFID sensors. In the
case of camera sensors, ASAP supports USB cameras and Axis network cameras.
JMF is used to support USB cameras, and it supports Windows, Linux, and
Solaris. Axis supports HTTP API called VAPIX API. By sending HTTP request,
camera features can be controlled, and images or streams can be retrieved. By
sending a request, http://[address]/axis-cgi/mjpg/video.cgi, a camera is
turned on and starts sending motion JPEG. With JMF, the camera URL is

ASAP: A Camera Sensor Network for Situation Awareness 39

represented as following; vfw://0 on Windows platform or v4l://1 on Linux
platform. The last digit starts from 0 to the number of USB cameras attached
exclusively. ASAP provides APIs for uniformly accessing cameras independent
of their type. It implicitly figures out the camera type from the URL once again
reducing the programming burden on the developer.

The data from the Sensor Agent may be directed dynamically to either the
control network or the data network at the behest of the ASAP agent. The
command from AA to SA specifies start/stop as well as periodicity (for periodic
sensors, see Section 3.1). Alert sensors simply send a binary output. For instance,
the RFID reader responds yes/no to a query for tracking a specific tag. It is
possible for the user to control the amount of communication generated by an
SA using the query interface. For example, if the user sets a threshold of motion,
then this will be communicated by AA in a command to the SA. Upon receiving
such a command, the associated SA for motion detection needs to send an alert
only when the level of motion crosses the threshold specified by the AA. Even
for a periodic stream (such as a video stream) communication optimization is
possible from the query interface using the WHERE clause.

We implemented Java motion detection based on open source and RFID sen-
sor using Alien Technology APIs. Since the ASAP agent is responsible for all
command decisions regarding the granularity of operation of the SAs, it was easy
to implement a variety of sensors (including multi-modal ones). Our experience
validates our claim regarding the utility of the virtual sensor abstraction.

4.2 ASAP Agent

ASAP Agent (AA) is the core component of ASAP system. Not only does it
handle multiple clients and Sensor Agents, but also communicates with other
AAs in a distributed manner. ASAP Agent works as a delegate of a client.
Since a client does not have global knowledge (e.g. how many cameras or RFID
readers are deployed), it picks an ASAP Agent, and sends queries. AA should
meet the following requirements: (1) efficient handling of multiple client queries,
(2) efficient management of the control and data networks, and (3) dynamic load
balancing via assignment of SAs to AAs.

Query Handler Module

Query handler module receives queries from multiple clients. An ASAP Agent
that receives a query, interprets it, and decides on which peer AAs to activate
on the control network. For example, a security guard may issue the following
query to find where in Gate 11 “Ellice” is and request to receive one camera
stream if she is in Gate 11.

SELECT images FROM zone(‘Gate 11’) WHERE RFIDTag = ‘Ellice’

As we mentioned in Section 3.2, each AA handles a cluster of SAs. There is no
global knowledge of SA to AA association. A given AA knows the attributes
of its peers (for e.g., which AA is responsible for SAs in Gate 11). Thus, upon
receiving this query, the AA will forward the query to the appropriate AA using

40 J. Shin et al.

the control network. Upon receiving the forwarded query, the AA for Gate 11
will issue commands to its local SAs (if need be) to satisfy the query. If the AA
already has the status of the SAs associated with it, then it can optimize by
responding to the query without having to issue commands to its SAs.

Priority Assignment Module

The function of the priority assignment module is three-fold: 1) control message
management, 2) relative priority assignment, and 3) data network management.
Each of these functions is implemented by separate sub-modules.

Control message management sub-module maintains a client request map.
Some of these requests may be from local clients, while others may be forwarded
from peer AAs. If the request needs local resources, then it hands it to the rel-
ative priority assignment sub-module. If it requires remote resources, then it is
forwarded as a control message to the peer AA. Communication is saved when
a new client request can be satisfied by a pending remote request to the peer.

Relative priority assignment sub-module assigns priority values to vari-
ous data streams. The priorities are assigned in the range {high,medium,low}.
ASAP uses only three values for priority assignment due to a simple and efficient
priority queue management and different streams are assigned to these queues.
All streams belonging to the queue for one priority level are treated in the same
way. This coarse grained priority assignment suits very well to ASAP. While
more fine grained priority assignments are possible, they increase the complex-
ity of implementation and overhead in queue managements.

The priority assignment happens over a series of steps and can take place in
two different ways. The first is a top-down approach where a client query has a
priority associated with it. In this case streams satisfying a query are assigned
the priority associated with the query. If one stream satisfies the queries from
multiple clients, the highest priority value among the queries is assigned to it.
The accumulated or average priority among the queries can lead to a priority
inversion. After a priority is assigned, streams are split into 3 groups for queues
of different priority levels.

With a bottom-up approach, ASAP assigns a priority to a stream. Since there
is no correlation among streams that meet distinct queries, this assignment oc-
curs when a client requests for more than one stream or the conditions in a
query are satisfied by multiple streams. In this situation AA assigns priority val-
ues ranging in {high,medium,low} to these streams. For instance, when a client
requests a highest motion detection limited by 3 streams, a stream with the
highest commotion will have {high} priority. As in a top-down approach, if a
stream is requested by multiple clients, ASAP chooses the highest priority.

Data network management sub-module sends control messages to SAs
indicating the data network to be turned on or off. The control messages also
contain the priority assigned to the data network. The same scheme of control
message management sub-module is used to manage request map of streams, and
both control and data network are optimized to reduce redundant transmission.

ASAP: A Camera Sensor Network for Situation Awareness 41

0 200 400 600 800

0
20

40
60

80
10

0

Time(s)

C
P

U
 L

oa
d

(%
)

Centralized
ASAP

(a)CPU Load

0 200 400 600 800

4
6

8
10

12

Time(s)
M

em
or

y
U

sa
ge

 (
M

B
)

Centralized
ASAP

(b)Memory Usage

Fig. 5. Resource usage (Centralized vs.
ASAP): A single object tracking system
based on RFID tag. Cameras produce
data (320x240 5 fps).

0 200 400 600 800

0
20

40
60

80
10

0

Time(s)

C
P

U
 L

oa
d

(%
)

Testbed
Emulated

(a)CPU Load

0 200 400 600 800

4
6

8
10

12
14

Time(s)

M
em

or
y

U
sa

ge
 (

M
B

)

Testbed
Emulated

(b)Memory Usage

Fig. 6. Testbed vs. Emulated: A single
object tracking system based on RFID tag
with 4 cameras, 4 motion sensors, and 4
RFID readers

5 Evaluation

Before we go into the details of our scalability results, it is worth looking at
how ASAP handles the concern that was raised in the introduction section.
With a simple setup of 4 cameras, 4 motion sensors, 4 RFID readers, and a
single client, we showed in Figure 1 that the CPU usage on a typical desktop
system is close to 100%. Figure 5 shows the same setup using the prioritization
strategy of ASAP and compares it with the 4-camera result from Figure 1. In
this setup, ASAP uses a specific RFID tag as a control cue to decide the camera
stream to be processed. As can be seen, use of control cues to select the camera
stream results in a 60% improvement in CPU load. This establishes a baseline
of expectation for performance improvement with the prioritization strategies of
ASAP, and the promise ASAP offers for reducing the infrastructure overload. In
the following subsections, we detail the experimental setup and the performance
results of our scalability studies.

5.1 Experimental Setup

Since our current testbed has only a limited number of real cameras and RFID
readers, the testbed is not enough for a large scale evaluation. Therefore, we
developed emulated sensors support using the uniform virtual sensor interface
discussed in Section 3. Due to the virtual sensor abstraction, an ASAP Agent
does not distinguish whether data comes from an emulated sensor or a real
sensor. The emulated camera sends JPEG images at a rate requested by a client.
The emulated RFID reader sends tag detection event based on an event file,
where different event files mimic different object movement scenarios.

To understand the impact of using emulated sensors on our results, we per-
formed an experiment to compare the resource usage of emulated sensors with
that of real sensors. Figure 6 shows the comparison. This experiment uses a net-
work of 4 camera sensors, 4 RFID, and 4 motion detection, for a single object
tracking. Because emulated sensors generate images and read from event files,
they consume more CPU and memory resources than real sensors. However, the
results show that the emulated setup is close enough to the real testbed thus
validating our scalability studies with emulated sensors.

42 J. Shin et al.

Table 2. Workload Parameters

Parameter Configuration

Number of SAs 20, 125, 245, 500, 980

Image Format M-JPEG 320x240 @ 5 fps

Number of Queries 1, 4, 8, 16, 32

Multi-Modality 1, 2, 3-Modality

Table 3. Cluster Specification

CPU Dual Intel Xeon 3.2 GHz

Memory 6GB

Network Gigabit Ethernet

Number of Nodes 53

OS Linux (Kernel 2.6.9)

●

● ●
● ●

0 200 400 600 800 1000

5
10

15
20

25
30

Number of Sensors

A
ve

ra
ge

 C
P

U
 L

oa
d

(%
)

●
●

Q=1, 20.1%

Q=4, 20.6%
Q=8, 21.1%

Q=32, 23.9%

(a)Average CPU Load

●

●
●

●
●

0 200 400 600 800 1000

0
1

2
3

4
5

Number of Sensors

O
ut

pu
t (

fp
s)

●
●

Q=1, 4.16

Q=4, 4.04

Q=8, 3.86

Q=32, 3.87

(b)Client output

●

●
● ● ●

0 200 400 600 800 1000

0
50

10
0

15
0

Number of Sensors

La
te

nc
y

(m
s)

●●

Q=1, 171ms

Q=4, 172ms

Q=8, 174ms

Q=16, 171ms

(c)Latency

Fig. 7. Scalability results: The solid line represents the effect of the number of SAs on
different scalability metrics for a single query. The dotted lines point to the scalability
results when the number of queries is varied from 1 (Q = 1) to 32 (Q = 32) for a setup
with 980 SAs.

Workload

For the following experiments, workload used is as follows. An area is assumed
to be made of a set of cells, organized as a grid. Objects start from a randomly
selected cell, wait for a predefined time, and move to a neighbor cell. The number
of objects, i.e. the number of RFID tags, the grid size, and the object wait time
are workload parameters.

Table 2 summarizes the parameters used in our experiments. The number of
SAs is varied from 20 to 980. An ASAP agent is assigned for every 20 SAs. For
e.g., for a setup with 20 SAs, there will be one ASAP agent, and for a setup with
125 SAs, there will be 6 ASAP agents. Each ASAP agent runs on a distinct node
of a cluster (see Table 3) of dual Intel Xeon 3.2 GHz processors with 6GB of
RAM running Linux. A fixed experiment duration (15 minutes) is used through
all performance evaluations. Other experimental parameters are explained below
in the context of the specific experiments.

5.2 Scalability, Query Handling, and Latency

Figure 7 shows scalability results for tracking a single object when the number of
SAs is increased. This corresponds to an application scenario wherein the move-
ment of a suspicious individual carrying a boarding pass with a specific RFID is
tracked in an airport. To handle the increase in the number of cameras and other
sensors, more ASAP Agents are added (with 20:1 ratio between SAs and ASAP

ASAP: A Camera Sensor Network for Situation Awareness 43

agent). Figure 7(a) shows the average CPU load over all the ASAP agents for
a particular configuration. On each node, processing cycles are used for ASAP
agent, SAs, and performance monitoring. With a single query, only one ASAP
agent in the entire system has to do the heavy lifting. While there is processing
cycles devoted to SAs and monitoring in each node of the distributed system
despite the fact that there is just a single query, the prioritization architecture
ensures that the CPU load due to the SAs on each node is pretty minimal. Since
the Y-axis is the CPU load averaged over all the nodes, there is an initial drop in
the average CPU load (from 25% to 19%) and then it remains the same at about
20%. The fact that the average CPU load remains the same despite the size of
the deployment (with 980 sensors we use 49 nodes of the cluster) is confirmation
of the scalability of the ASAP architecture. As a side note, the CPU load on
each node due to performance monitoring is 7.5%.

For the maximum workload configuration of 980 SAs, Figure 7(a) also shows
how ASAP scales with varying number of queries (clients). The multiple query
experiment assumes the queries are independent of one other and are emanating
from distinct clients. This corresponds to an application scenario wherein the
movement of multiple suspicious individuals carrying boarding passes tagged
with distinct RFIDs are tracked in an airport by different security personnel.
Increasing the number of queries increases the average CPU load, but at a very
low rate. For example, when the number of queries increases from one to 32, the
average CPU usage per node increases only by 4%.

Figure 7(b) shows the scalability of ASAP for delivering output (video streams)
to multiple clients. The workload (Table 2) fixes the camera data generation at 5
fps. Ideally, we would like to see this as the delivered frame rate to the clients. With
the single node vanilla system that we discussed in the introduction (Section 1), we
observed an output delivery rate of 3 fps (a companion measurement to Figure 1).
As can be seen in Figure 7(b), the average output delivery rate is over 4.26 fps
over the range of SAs we experimented with. The frame rate degrades gracefully
as the size of the system is scaled up (along the x-axis). Even when the number
of queries increase, the frames per second degrades gracefully, for e.g., with 32
queries, ASAP delivers (Figure 7(b)) on an average 3.87 fps over the range of SAs
we experimented with.

Figure 7(c) shows the end-to-end latency measurement as the system size is
scaled up (along the x-axis). The measured time is the elapsed time between
receiving a frame at the SA associated with a camera to the time it is delivered
to a client. This latency is 135 ms with a single AA. As the system is scaled up
the source SA and the destination client may be associated with different nodes
(i.e., different AAs as shown in Figure 3) requiring a forwarding of the data
stream. However, as can be seen from Figure 7(c), the forwarding only slightly
increases the end-to-end latency as the system is scaled up. On an average the
latency is 170 ms over the range of SAs we experimented with. Similarly, the
latency is not affected tremendously with the number of queries. In fact with
16 queries, there is even a reduction in the latency which may be attributed
to perhaps the source SA and the destination client being collocated at an AA
more often than not (thus reducing the forwarding messages incurred).

44 J. Shin et al.

20 125 245 500 980

Number of Sensors

B
an

dw
id

th
 (

K
B

/s
)

0
20

40
60

80 Send Receive Control

Fig. 8. Bandwidth usage: The
number of SAs is varied from 20
to 980 with a single query

1 4 8 16 32

Number of Queries

B
an

dw
id

th
 (

K
B

/s
)

0
20

40
60

80 Send Receive Control

Fig. 9. Average Bandwidth: the
number of queries is varied from 1
to 32 with the largest configuration
of 980 SAs

5.3 Network Bandwidth

Another important resource to consider as we scale up the system size is the net-
work bandwidth. Similar to the CPU load experiments in Section 5.2, we wish
to understand how the network bandwidth requirement changes with increasing
system size and increasing number of queries. As a point of reference, the ob-
served raw bandwidth requirement per M-JPEG stream (from the Axis camera)
is 40 KBytes/sec to 60 KBytes/sec (at 5 fps) depending on the contents of the
image frame. There are three sources of demand on network bandwidth in the
ASAP architecture: an AA receiving data streams from sensors via associated
SAs (including forwarding to peer AAs), an AA sending data streams to clients,
and AAs communicating control information with another. The first two are de-
mands placed on the physical network by the data streams and the third by the
control streams. Figure 8 shows the network bandwidth used for a single query
when the system is scaled up. The send bandwidth remains roughly the same
and tracks the frames/sec delivered to the clients in Figure 7(b). The receive
bandwidth roughly doubles beyond one node and represents the data forward-
ing between AAs. However, it stays pretty much the same independent of the
system size showing the scalability of the ASAP architecture. The reason for the
doubling is due to the fact that the workload assumes random positioning of the
object being tracked (over the 15 minute window of experimentation time); thus
the larger the network the more the chance of data being forwarded between
AAs. However, there is at most one hop of forwarding due to the peer-to-peer
nature of the AA arrangement in the ASAP architecture. The control traffic
(small black line which is almost invisible) is just 2% of the total bandwidth
usage independent of the system size due to the variety of optimizations that we
discussed in Section 4.2.

Figure 9 shows the average bandwidth usage for increasing number of queries.
This experiment uses the maximum workload configuration of 980 SAs (Table 2).
As with the CPU load experiments, each client query is tracking a different ob-
ject. We do have results when all the clients request the same object to be tracked
but have not presented them in this paper for space considerations. As may be
expected such clustering of requests results in reducing the network requirements
(specifically the receive and control traffic bandwidths are reduced).

ASAP: A Camera Sensor Network for Situation Awareness 45

5.4 Other Results

We have also conducted experiments to test false positives and false negatives.
ASAP uses a dynamic voting mechanism to reduce the ill effects of false positive
and false negatives. These mechanisms result in reduction in the range of 18%-
64% for false-positives and -negatives. Due to space limitations, we do not present
these experiments and results.

6 Related Works

There have been other interesting researches on architecture for camera sensor
networks, which have motivated ASAP’s two-tier approach of control and data
networks. IrisNet [6] provides an architecture for a worldwide sensor web. It also
shares commonalities with ASAP such as agent-based approach, two-tier net-
work, and heterogeneous sensors support. The major difference lies in the main
goal and target applications. IrisNet focuses on distributed database techniques
for gathering sensor data and querying the collected data. The result of query
in IrisNet is a digest of information culled from the collected data stored in the
distributed databases. The focus of ASAP is to prioritize and prune data collec-
tion in an application-specific manner to deal with the data explosion so that
irrelevant data is neither collected, nor processed, nor stored. Further, ASAP
provides a continuous stream of information as the query result (which may be
real-time data streams or digests of processing such real-time streams) satisfy-
ing the query constraints. The techniques for storing and retrieving data and
maintaining consistency of the distributed databases, a forte of IrisNet project,
is a nice complement to our work.

SensEye [7] is an architecture for multi-tier camera sensor network. SensEye
uses three tier networks, and sense-actuate control loop exists from lowest tier
(with low resolution cameras) to the highest (with higher resolution cameras).
While SensEye focuses on the reduction of power consumption, having 3-tiered
network can increase the complexity of software architecture. Tenet [8] also uses
a tiered architecture. However, the focus of Tenet lies on the architecture support
for simplifying application development and concurrent application, while ASAP
focuses on how to query camera sensors in a scalable manner.

A natural way to think about managing resources in situation awareness ap-
plications is to leverage the application dataflow. For example, RF 2ID [9] is a
middleware that uses the flow of tagged objects to create a group of nodes that
can process the data generated from those objects. Similarly, the concept of flow
is used to support QoS-aware routing [10]. In such situations, location-based cor-
relation [11] can facilitate the desirable clustering of the nodes. Also, techniques
from on-demand clustering [12] can be used to further reduce the amount of
communication required to do reclustering in a dynamic environment. Finally,
apart from using just location-based attributes, other attributes can also be used
to achieve an application-aware clustering [13].

Supporting QoS in network layers has been an active area of research because
of the growing popularity of cell phones and multimedia services. QoS-aware

46 J. Shin et al.

medium access control protocols have been proposed to handle different tech-
niques to match with different data types, for e.g., IEEE 801.11e handles four dif-
ferent data classes for better QoS support [14]. To handle real-time requirements
for QoS-aware routing, common techniques used are rate-control techniques at
data sources and route adjustments by finding least-cost and delay-constrained
links [15]. Similarly, rate control and congestion control mechanisms have been
used to provide QoS-aware transport protocols [16]. Our application-layer ap-
proach to do the priority assignment is complementary to and fits on top of the
above network layer techniques.

7 Conclusions

Situation awareness is an important application category in cyber-physical sys-
tems. Video-based surveillance is an example of this category of applications.
There is an explosion in the amount of data that has to be dealt with in such
applications, especially as the data sources scale up.

ASAP is a distributed systems architecture for camera based sensor networks
that deals with this data deluge. The unique feature of ASAP is a systematic
approach to prioritizing the data streams, and the subsequent processing of these
streams using cues derived from a variety of sensory sources. Further, the peer-
to-peer nature of the ASAP architecture ensures scalability to a large number
of camera sources, and for the dynamic allocation of computational resources to
hot spots in the application. Lastly, the system provides a systematic way for
reducing false positives and false negatives using multi- modal sensing.

Acknowledgements

The work has been funded in part by an NSF ITR grant CCR-01-21638, NSF NMI
grant CCR-03-30639, NSF CPA grant CCR-05-41079, and the Georgia Tech Broadband
Institute. The equipment used in the experimental studies is funded in part by an NSF
Research Infrastructure award EIA-99-72872, and Intel Corp. We thank the members
of the Embedded Pervasive Lab at Georgia Tech (http://wiki.cc.gatech.edu/epl/)
for their helpful feedback on our work.

References

1. Buckley, C.: New york plans surveillance veil for downtown. The New York
Times (July 2007), http://www.nytimes.com/2007/07/09/nyregion/09ring.html

2. McCahill, M., Norris, C.: CCTV in London. Technical report, University of Hull
(June (2002)

3. Java Media Framework API: http://java.sun.com/products/java-media/jmf
4. Axis Communication: http://www.axis.com/
5. Alien Technology: http://www.alientechnology.com/
6. Deshpande, A., Nath, S.K., Gibbons, P.B., Seshan, S.: Cache-and-query for wide

area sensor databases. In: Proceedings of the 2003 ACM SIGMOD, pp. 503–514.
ACM Press, New York (2003)

http://wiki.cc.gatech.edu/epl/
http://java.sun.com/products/java-media/jmf
http://www.axis.com/
http://www.alientechnology.com/

ASAP: A Camera Sensor Network for Situation Awareness 47

7. Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: Senseye: a multi-tier camera sensor
network. In: MULTIMEDIA 2005, Hilton, Singapore, ACM, New York, NY, USA
(2005)

8. Gnawali, O., Jang, K.-Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki,
A., Estrin, D., Kohler, E.: The tenet architecture for tiered sensor networks. In:
SenSys 2006, Boulder, Colorado, USA, pp. 153–166. ACM, New York, NY, USA
(2006)

9. Ahmed, N., Kumar, R., French, R., Ramachandran, U.: RF2ID: A reliable mid-
dleware framework for RFID deployment. In: IEEE IPDPS, March 2007, IEEE
Computer Society Press, Los Alamitos (2007)

10. Apostolopoulos, G., Kama, S., Williams, D., Guerin, R., Orda, A., Przygienda, T.:
QoS routing mechanisms and OSPF extensions. IETF Draft, RFC 2676 (1996)

11. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. In:
MOBICOM, pp. 85–96 (2001)

12. Chatterjee, M., Das, S., Turgut, D.: An on-demand weighted clustering algorithm
(WCA) for ad hoc networks. In: Proceedings of IEEE Globecom, IEEE Computer
Society Press, Los Alamitos (2000)

13. PalChaudhuri, S., Kumar, R., Baraniuk, R.G., Johnson, D.B.: Design of adap-
tive overlays for multi-scale communication in sensor networks. In: Prasanna,
V.K., Iyengar, S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560,
Springer, Heidelberg (2005)

14. Fallah, Y.P., Alnuweiri, H.: A controlled-access scheduling mechanism for QoS pro-
visioning in IEEE 802.11e wireless LANs. In: Proceedings of the 1st ACM interna-
tional workshop on Quality of service & security in wireless and mobile networks,
pp. 122–129. ACM Press, New York (2005)

15. Alghamdi, M.I., Xie, T., Qin, X.: PARM: a power-aware message scheduling al-
gorithm for real-time wireless networks. In: WMuNeP 2005. Proceedings of the
1st ACM workshop on Wireless multimedia networking and performance modelin,
ACM Press, New York (2005)

16. Cho, S., Bettati, R.: Improving quality of service of tcp flows in strictly prioritized
network. In: ACST 2006. Proceedings of the 2nd IASTED international conference
on Advances in computer science and technology

	Introduction
	Understanding ASAP Requirements
	Example Application: Video Based Surveillance
	Application Requirements

	Architecture
	Sensor Agent
	ASAP Agent

	Implementation
	Sensor Agent
	ASAP Agent

	Evaluation
	Experimental Setup
	Scalability, Query Handling, and Latency
	Network Bandwidth
	Other Results

	Related Works
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

