Abstract
Situation awareness is an important application category in cyber-physical systems, and distributed video-based surveillance is a good canonical example of this application class. Such applications are interactive, dynamic, stream-based, computationally demanding, and needing real-time or near real-time guarantees. A sense-process-actuate control loop characterizes the behavior of this application class. ASAP is a scalable distributed architecture for a multi-modal sensor network that caters to the needs of this application class. Features of this architecture include (a) generation of prioritization cues that allow the infrastructure to pay selective attention to data streams of interest; (b) virtual sensor abstraction that allows easy integration of multi-modal sensing capabilities; and (c) dynamic redirection of sensor sources to distributed resources to deal with sudden burstiness in the application. In both empirical and emulated experiments, ASAP shows that it scales up to a thousand of sensor nodes (comprised of high bandwidth cameras and low bandwidth RFID readers), significantly mitigates infrastructure and cognitive overload, and reduces false negatives and false positives due to its ability to integrate multi-modal sensing.
ASAP stands for “Priority Aware Situation Awareness” read backwards.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buckley, C.: New york plans surveillance veil for downtown. The New York Times (July 2007), http://www.nytimes.com/2007/07/09/nyregion/09ring.html
McCahill, M., Norris, C.: CCTV in London. Technical report, University of Hull (June (2002)
Java Media Framework API: http://java.sun.com/products/java-media/jmf
Axis Communication: http://www.axis.com/
Alien Technology: http://www.alientechnology.com/
Deshpande, A., Nath, S.K., Gibbons, P.B., Seshan, S.: Cache-and-query for wide area sensor databases. In: Proceedings of the 2003 ACM SIGMOD, pp. 503–514. ACM Press, New York (2003)
Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: Senseye: a multi-tier camera sensor network. In: MULTIMEDIA 2005, Hilton, Singapore, ACM, New York, NY, USA (2005)
Gnawali, O., Jang, K.-Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki, A., Estrin, D., Kohler, E.: The tenet architecture for tiered sensor networks. In: SenSys 2006, Boulder, Colorado, USA, pp. 153–166. ACM, New York, NY, USA (2006)
Ahmed, N., Kumar, R., French, R., Ramachandran, U.: RF2ID: A reliable middleware framework for RFID deployment. In: IEEE IPDPS, March 2007, IEEE Computer Society Press, Los Alamitos (2007)
Apostolopoulos, G., Kama, S., Williams, D., Guerin, R., Orda, A., Przygienda, T.: QoS routing mechanisms and OSPF extensions. IETF Draft, RFC 2676 (1996)
Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. In: MOBICOM, pp. 85–96 (2001)
Chatterjee, M., Das, S., Turgut, D.: An on-demand weighted clustering algorithm (WCA) for ad hoc networks. In: Proceedings of IEEE Globecom, IEEE Computer Society Press, Los Alamitos (2000)
PalChaudhuri, S., Kumar, R., Baraniuk, R.G., Johnson, D.B.: Design of adaptive overlays for multi-scale communication in sensor networks. In: Prasanna, V.K., Iyengar, S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg (2005)
Fallah, Y.P., Alnuweiri, H.: A controlled-access scheduling mechanism for QoS provisioning in IEEE 802.11e wireless LANs. In: Proceedings of the 1st ACM international workshop on Quality of service & security in wireless and mobile networks, pp. 122–129. ACM Press, New York (2005)
Alghamdi, M.I., Xie, T., Qin, X.: PARM: a power-aware message scheduling algorithm for real-time wireless networks. In: WMuNeP 2005. Proceedings of the 1st ACM workshop on Wireless multimedia networking and performance modelin, ACM Press, New York (2005)
Cho, S., Bettati, R.: Improving quality of service of tcp flows in strictly prioritized network. In: ACST 2006. Proceedings of the 2nd IASTED international conference on Advances in computer science and technology
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shin, J., Kumar, R., Mohapatra, D., Ramachandran, U., Ammar, M. (2007). ASAP: A Camera Sensor Network for Situation Awareness. In: Tovar, E., Tsigas, P., Fouchal, H. (eds) Principles of Distributed Systems. OPODIS 2007. Lecture Notes in Computer Science, vol 4878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77096-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-77096-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77095-4
Online ISBN: 978-3-540-77096-1
eBook Packages: Computer ScienceComputer Science (R0)