Skip to main content

Integer Representation and Counting in the Bit Probe Model

  • Conference paper
Algorithms and Computation (ISAAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Included in the following conference series:

Abstract

We examine the problem of integer representation in near minimal number of bits so that increment and decrement (and indeed addition and subtraction) can be performed using few bit inspections and fewer bit changes. In particular, we prove a new lower bound of \(\Omega(\sqrt{n})\) for the increment and decrement operation, where n is the minimum number of bits required to represent the number. The model of computation we considered is the bit probe model, where the complexity measure counts only the bitwise accesses to the data structure. We present several efficient data structures to represent integer that use a logarithmic number of bit inspections and a constant number of bit changes per operation.

This work was supported by NSERC of Canada and The Canada Research Chairs Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boothroyd, J.: Algorithm 246 Graycode. Communications of the ACM 7(12), 701 (1964)

    Article  Google Scholar 

  2. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are Bitvectors Optimal? SIAM Journal on Computing 31(6), 1723–1744 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carlsson, S., Munro, J.I., Poblete, P.V.: An Implicit Priority Queue with Constant Insertion Time. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 1–13. Springer, Heidelberg (1988)

    Google Scholar 

  4. Clancy, M.J., Knuth, D.E.: A Programming Problem-Solving Seminar. Tech Report, Computer Science Dept. School of Humanities and Science, Stanford University. STAN-CS-77-606 (1977)

    Google Scholar 

  5. Doran, M.W.: The Gray Code. CDMTCS Research Report (2007), www.cs.auckland.ac.nz/CDMTCS//researchreports/304bob.pdf

  6. Er, M.C.: Remark on Algorithm 246 (Gray Code). ACM Transactions on Mathematical Software 11(4), 441–443 (1985)

    Article  Google Scholar 

  7. Erdös, P., Rado, R.: Intersection Theorems for Systems of Sets. Journal of the London Mathematical Society 35, 85–90 (1960)

    Article  MATH  Google Scholar 

  8. Frandsen, G.S., Miltersen, P.B., Skyum, S.: Dynamic Word Problems. Journal of the ACM 44, 257–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fredman, M.L.: Observations on the Complexity of Generating Quasi-Gray Codes. SIAM Journal on Computing 7, 134–146 (1978)

    Article  MathSciNet  Google Scholar 

  10. Gray, F.: Pulse Code Communications. U.S. Patent 2632058 (1953)

    Google Scholar 

  11. Lucal, H.: Arithmetic Operations for Digital Computers Using a Modified Reflected Binary Code. IEEE Transactions on Computers, 449–458 (1959)

    Google Scholar 

  12. Miltersen, P.B.: Lower Bounds on the Size of Selection and Rank Indexes. In: Proceedings of the 16th ACM/SIAM SODA, pp. 11–12 (2005)

    Google Scholar 

  13. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  14. Misra, J.: Remark on Algorithm 246:Graycode[Z]. ACM Transactions on Mathematical Software 1(3), 285 (1975)

    Article  Google Scholar 

  15. PätraÅŸcu, C.E., PätraÅŸcu, M.: On Dynamic Bit-Probe Complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 969–981. Springer, Heidelberg (2005)

    Google Scholar 

  16. Radhakrishnan, J., Raman, V., Rao, S S.: Explicit Deterministic Constructions for Membership in the Bitprobe Model. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 290–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Yao, A.C.C.: Should Tables be Sorted? Journal of The ACM 28, 615–628 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahman, M.Z., Munro, J.I. (2007). Integer Representation and Counting in the Bit Probe Model. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics