Abstract
We consider two non-convex enclosing shapes with the minimum area; the L-shape and the quadrant hull. This paper proposes efficient algorithms computing each of two shapes enclosing a set of points with the minimum area over all orientations. The algorithms run in time quadratic in the number of given points by efficiently maintaining the set of extremal points.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 233, pp. 1–56. American Mathematical Society Press, Providence (1999)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)
Karlsson, R.G., Overmars, M.H.: Scanline algorithms on a grid. BIT Numerical Mathematics 28(2), 227–241 (1988)
Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discrete Comput. Geom. 19, 105–130 (1998)
Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)
Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10, 157–182 (1993)
Montuno, D.Y., Fournier, A.: Finding the x − y convex hull of a set of x − y polygons. Technical Report 148, University of Toronto (1982)
Nicholl, T.M., Lee, D.T., Liao, Y.Z., Wong, C.K.: On the X − Y convex hull of a set of X − Y polygons. BIT Numerical Mathematics 23(4), 456–471 (1983)
Ottman, T., Soisalon-Soisinen, E., Wood, D.: On the definition and computation of rectilinear convex hulls. Information Sciences 33, 157–171 (1984)
Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM 20(2), 87–93 (1977)
Schwarzkopf, O., Fuchs, U., Rote, G., Welzl, E.: Approximation of convex figures by pairs of rectangles. In: Proc. 7th Ann. Symp. on Theoretical Aspects of Computer Science, pp. 240–249 (1990)
Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bae, S.W., Lee, C., Ahn, HK., Choi, S., Chwa, KY. (2007). Maintaining Extremal Points and Its Applications to Deciding Optimal Orientations. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_68
Download citation
DOI: https://doi.org/10.1007/978-3-540-77120-3_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77118-0
Online ISBN: 978-3-540-77120-3
eBook Packages: Computer ScienceComputer Science (R0)