Skip to main content

Spanning Trees with Many Leaves in Regular Bipartite Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Included in the following conference series:

Abstract

Given a d-regular bipartite graph G d , whose nodes are divided in black nodes and white nodes according to the partition, we consider the problem of computing the spanning tree of G d with the maximum number of black leaves. We prove that the problem is NP hard for any fixed d ≥ 4 and we present a simple greedy algorithm that gives a constant approximation ratio for the problem. More precisely our algorithm can be used to get in linear time an approximation ratio of 2 − 2/(d − 1)2 for d ≥ 4. When applied to cubic bipartite graphs the algorithm only achieves a 2-approximation ratio. Hence we introduce a local optimization step that allows us to improve the approximation ratio for cubic bipartite graphs to 1.5.

Focusing on structural properties, the analysis of our algorithm proves a lower bound on l B (n,d), i.e., the minimum m such that every G d with n black nodes has a spanning tree with at least m black leaves. In particular, for d = 3 we prove that l B (n,3) is exactly \(\left\lceil\frac{n}{3}\right\rceil +1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.L.: On linear time minor tests and depth first search. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382, pp. 577–590. Springer, Heidelberg (1989)

    Google Scholar 

  2. Bonsma, P.S., Brüggemann, T., Woeginger, G.J.: A faster fpt algorithm for finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

    Google Scholar 

  3. Caro, Y., West, D.B., Yuster, R.: Connected domination and spanning trees with many leaves. SIAM Journal on Discrete Mathematics 13(2), 202–211 (2000)

    Article  MathSciNet  Google Scholar 

  4. Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. Journal of Graph Theory 37, 189–197 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fujie, T.: The maximum-leaf spanning tree problem: Formulations and facets. Networks 43(4), 212–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  8. Griggs, J.R., Kleitman, D.J., Shastri, A.: Spanning trees with many leaves in cubic graphs. Journal of Graph Theory 13(6), 669–695 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Griggs, J.R., Wu, M.: Spanning trees in graphs of minimum degree 4 or 5. Discrete Math. 104(2), 167–183 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM Journal on Discrete Mathematics 4(1), 99–106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lemke, P.: The maximum leaf spanning tree problem for cubic graphs is np-complete. Technical Report IMA Preprint Series # 428, University of Minnesota (July 1988)

    Google Scholar 

  12. Li, P.C., Toulouse, M.: Variations of the maximum leaf spanning tree problem for bipartite graphs. Inf. Process. Lett. 97(4), 129–132 (2006)

    Article  MathSciNet  Google Scholar 

  13. Lorys, K., Zwozniak, G.: Approximation algorithm for the maximum leaf spanning tree problem for cubic graphs. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 686–697. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Lu, H.-I, Ravi, R.: The power of local optimizations: Approximation algorithms for maximum-leaf spanning tree (draft)*. Technical Report CS-96-05 (1996)

    Google Scholar 

  15. Lu, H.-I, Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rahman, M.S., Kaykobad, M.: Complexities of some interesting problems on spanning trees. Inf. Process. Lett. 94(2), 93–97 (2005)

    Article  MathSciNet  Google Scholar 

  17. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Storer, J.A.: Constructing full spanning trees for cubic graphs. Inf. Process. Lett. 13, 8–11 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fusco, E.G., Monti, A. (2007). Spanning Trees with Many Leaves in Regular Bipartite Graphs. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics