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Abstract. This paper analyzes discrete time portfolio selection models with 

Lévy processes. We first implement portfolio models under the hypotheses the 

vector of log-returns follow or a multivariate Variance Gamma model or a 

Multivariate Normal Inverse Gaussian model or a Brownian Motion. In 

particular, we propose an ex-ante and an ex-post empirical comparisons by the 

point of view of different investors. Thus, we compare portfolio strategies 

considering different term structure scenarios and different distributional 

assumptions when unlimited short sales are allowed. 
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1   Introduction 

In this paper, we model the returns as a multidimensional time-changed Brownian 

motion where the subordinator follows or an Inverse Gaussian process or a Gamma 

process. Under these different distributional hypotheses we compare the portfolio 

strategies with the assumption that the log-returns follow a Brownian motion. 

The literature in the multi-period portfolio selection has been dominated by the results 

of maximizing expected utility functions of terminal wealth and/or multi-period 

consumption. Differently from classic multi-period portfolio selection approaches, we 

consider mean-variance analysis alternative to that proposed by Li and Ng's (2000) by 

giving a mean-dispersion formulation of the optimal dynamic strategies. Moreover we 

also discuss a mean, variance, skewness and kurtosis extension of the original multi-

period portfolio selection problem. These alternative multi-period approaches analyze 

portfolio selection, taking into consideration the admissible optimal portfolio choices 

when the log-returns follow a Lévy process. This analysis differs from other studies 

that assume Lévy processes with very heavy tails (see Rachev and Mittnik (2000), 

Ortobelli et al. (2004)), since we consider Lévy processes with semi-heavy tails. In 

order to compare the dynamic strategies under the different distributional 

assumptions, we analyze two investment allocation problems. The primary 

contribution of this empirical comparison is the analysis of the impact of 

distributional assumptions and different term structures on the multi-period asset 

allocation decisions. Thus, we propose a performance comparison among different 

multi-period mean-variance approach based on different Lévy processes and taking 

into consideration three different implicit term structures. For this purpose we discuss 
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the optimal allocation obtained by different risk averse investors with different risk 

aversion coefficients. We determine the multi-period optimal choices given by the 

minimization of the variance for different levels of final wealth average. Each 

investor, characterized by his/her utility function, will prefer the mean-variance model 

which maximizes his/her expected utility on the efficient frontier. Thus the portfolio 

policies obtained with this methodology represent the optimal investors' choices of 

the different approaches. 

In Section 2, we introduce dynamic portfolio selection under the different multivariate 

distributional hypotheses. In Section 3 we propose a comparison of optimal portfolio 

strategies. Section 4, briefly summarizes the results.  

2. Discrete time portfolio selection with subordinated Lévy 

processes 

In this section we deal the dynamic portfolio selection problem among N+1 assets: N 

are risky assets and the (N+1)-th is risk free. We introduce portfolio selection models 

based on different assumptions of log-return distributions. In particular, we consider 

the Normal Inverse Gaussian  process (NIG) and the Variance-Gamma one (VG) 

which are Lévy processes with semi heavy tails as suggested by Staino et al. (2007). 

These processes can be seen as subordinated Lévy processes where the subordinators 

are respectively the Inverse Gaussian process and the Gamma process. 

Suppose that in the market the vector of risky assets has log-returns 
(1) ( )

[ ,..., ]'
N

t t t
X X=X  distributed as:  

( )N

tt t Z
t Z W+ + 1/2X = s µ Q ,                                                 (1) 

where 
1 2[ , , , ] 'Nµ µ µ=µ … , 

1 2[ , , , ] 'Ns s s=s … , 
tZ  is the positive Lévy process 

subordinator, 2

ij
σ =  Q  is a fixed definite positive variance-covariance matrix (i.e., 

2

ij ii jj ij
σ σ σ ρ=  where 

ij
ρ  is the correlation between the conditional i-th component of 

/t tZX  and its conditional j-th component) and ( )N

t
W  is a N-dimensional standard 

Brownian motion (i.e., ( )N

tZ t
W Z=1/2 1/2Q Q Y  where Y  is a standard N-dimensional 

Gaussian independent of tZ ). Under the above distributional hypotheses we 

approximate the log-return of the portfolio with the portfolio of log-returns, that is the 

convex combination of the log-returns: 
( ) ( ) ,

t

w

t t t Z
X t Z W′= = + +wX ws wµ wQw                              (2) 

where 
1[ , , ]Nw w=w …  is the vector of the weights invested in the risky assets, 

tW  is 

a 1-dimensional standard Brownian motion. At this point we will assume, that the 

subordinator 
tZ  is modeled either as an Inverse Gaussian process 

1 (1, )Z b∼IG  or as 

a Gamma process ( )1 1
1

,Z
ν ν

∼ Gamma . An Inverse Gaussian process 

{ }( ) ( )

0

IG IG

t t
X X

≥
=  assumes that any random variable ( )IG

t
X  admits the following 

density function: 
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3 / 2 2 2 1 2

[ 0]

1
( ; , ) exp( ) exp ( ) 1

22
IG x

ta
f x ta b tab x t a x b x

π

− −
>

 
= − + 

 
, 

that is defined as Inverse Gaussian distribution ( , )IG ta b  where a, b are positive. A 

Gamma process { }( ) ( )

0

Gamma Gamma

t t
X X

≥
=  assumes that any random variable ( )Gamma

tX  

admits the following density function: 

1

[ 0]( ; , ) exp( )1
( )

ta

ta

Gamma x

b
f x t a b x xb

ta

−
>= −

Γ
, 

that is defined as Gamma distribution ( , )Gamma ta b  where a, b are positive. 

NIG Processes. When tZ  follows an Inverse Gaussian process (i.e., 1 (1, )Z b∼ IG ), 

then, the i-th log-return at time t=1 follows a NIG process ( , , , )i i i isα β δNIG  where 

the parameters are given by: 2 2( / )
i i i

bα δ β= + , 2
/ ( , )

i i i i i
β µ δ α α= ∈ − , 

is R∈  and 

0i iiδ σ= > . Thus, the portfolio (2) follows a ( , , , )w w w wsα β δNIG  process whose 

parameters are:  

( )
2

2
, , ,

w

b
w w w w ws

δ
α β β δ′

′= = + = =
wµ

wQw
ws wQw . 

In order to estimate all these parameters, we follow the MLE procedure suggested by 

Staino et al. (2007). 

Variance-Gamma Processes. When tZ  follows a Gamma process (i.e., at time t=1 

( )1 1
1

,Z
ν ν

∼ Gamma ), then the log-return of the i-th asset at time t=1 follows a 

Variance-Gamma process with parameters ,i is Rµ ∈ , and , 0iiv σ >  (i.e., 

( )

1 ( , , , )
i

i i i
X sµ σ ν∼ VG ). Analogously, the portfolio (2) follows a Variance-Gamma 

process with parameters 
ws = ws , 

wµ = wµ , 
w

σ ′= wQw  and ν . As for the NIG 

process we estimate all these parameters following the MLE procedure suggested by 

Staino et al. (2007). In portfolio theory, it has been widely used a Brownian Motion to 

model the vector of log-returns distribution. Under this assumption the portfolio 

follows a Brownian Motion { }( ) ( )

0

BM w BM w

t t
X X

≥
=  process, that is the portfolio of log 

returns at time t is normal distributed with mean twµ  and standard deviation 

t ′wQw . In the next subsection we describe the portfolio selection problem under 

the different distributional assumptions.  

2.1   The discrete time portfolio selection problem 

Suppose an investor has a temporal horizon 
Tt  and he recalibrates its portfolio T 

times at some intermediate date, say 
0 1, , Tt t t −= …  (where 

0 0t = ). Since Lévy 

processes have independent and stationary increments the distribution of the random 

vector of log-returns on the period 1( , ]j jt t +  (i.e., 
1j jt t+

−X X ) is the same of 

1 1 1

(1) ( )[ ,..., ]'
j j j j j j

N

t t t t t t
X X

+ + +− − −=X . Considering that log-returns represent a good 
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approximation of returns when 
1j jt t+ −  is little enough, we assume that 

( )1
0,..., 1
max j j

j T
t t+

= −
−  is less or equal than one month and we use 

1 1, ,
: [ ,..., ]'

j j j j jt t t t N t
Y Y

+
= − =Y X X  to estimate the vector of returns on the period 

1( , ]j jt t + . Suppose the deterministic variable 0, jtr  represents the return on the period 

1( , ]j jt t +  of the risky-free asset, 
, ji t

x  the amount invested at time 
jt  in the i-th risky 

asset, and 0, jtx  the amount invested at time jt  in the risky-free asset. Then the 

investor's wealth at time 
1kt +  is given by: 

1 , , 0,

0

W (1 ) (1 )W ,
k k k k k k k

N

t i t i t t t t t

i

x Y r
+

=

= + = + +∑ x P                           (3) 

where 
1, ,

[ , , ]
k k kt t N t

x x=x … , 
1, ,

[ , , ]
k k kt t N t

P P ′=P …  is the vector of excess returns  

, , 0,k k ki t i t tP Y r= − . Thus, the final wealth is given by:  

1

1 2 1

0 0, 0, 1

0 0 1

W W (1 ) (1 )
T k i i k T

T T T

t t t t t t T

k i k i

r r
−

− − −

−

= = = +

= + + + +∏ ∑ ∏x P x P ,                  (4) 

where the initial wealth 00 ,0W N
i ix== ∑  is known. Assume that the amounts 

1, ,
[ , , ]

j j jt t N t
x x=x …  are deterministic variables, whilst the amount invested in the 

risky-free asset is the random variable 0, j j jt t tx W= − x e , where [1, ,1]′=e … . Under 

these assumptions the mean, the variance the skewness and kurtosis of the final 

wealth are respectively 
1

0 0 1

0

(W ) W ( )
T i i

T

t t t i

i

E B E B
−

+

=

= +∑ x P                                      (5a) 

( ) ( )2 21
0 1( )

T

T
iT t iW W Bσ −
= += = ∑

i i it t tx Q x'Variance                         (5b) 

( )
( )

1
3 3

1

0

3

( ( ))

W
( )

i i i i

T

T

T

t t t t i

i

t

t

E E B

Wσ

−

+

=

−

=
∑ x P x P

Sk                                 (5c) 

( )
( ) ( )

1 1 1
2 2 4 4

1 1 1

0 1 0

4

6 ( ( ))

W
( )

j j j i i i i

T

T

T T T

j i t t t t i

i j i i

t

t

B B E E B

Wσ

− − −

+ + +
= = + =

+ −

=

∑∑ ∑i i it t t t t t
x Q x' x Q x' x P x P

Ku           (5d) 

where 1TB = , 
1

0,(1 )
j

T

k t

j k

B r
−

=

= +∏ . Therefore, if we want to select the optimal 

portfolio strategies that solve the mean-variance problem: 

0 1
, ,
min [W ]

. . ,

[W ]

T
t tT

T

t

tE m

−




 =


x x…

Variance

st  

we can use the closed form solutions determined by Ortobelli et al. (2004). These 
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solutions for Lévy subordinated processes are given by: 

10 0

1 1

1 0

W
' ( )

( ) ' ( )
k k k

j j j

t t tT

k t t tj

m B
E

B E E

−

− −
+ =

−
=

∑
x Q P

P Q P
 0, , 1k T= −…              (6) 

where the components of the matrix 
,

[ ]
k kt ij t

q=Q , (k=0,…,T-1), are 

1 1

( ) ( )

,
( , )

k k k k k

i j

ij t t t t t
q X X

+ +− −= Cov . The optimal wealth invested in the riskless asset at time 

0 0t =  is the deterministic quantity 
00,0 0W tx = − x e , while at time jt  it is given by 

the random variable 
0,

W
j j jt t t

x = − x e , where W
jt
 is formulated in equation (3). 

Observe that the covariance , kij tq  among components of the vector 

( ) ( )

1 1 1
1

N

j j j j t tj j
t t j j t t Zt t Z W

+ + −+
− + −= − + + 1/2X s µ Q  is given by  

1 1

2

,
( ) [ ]

k k k k kij t ij t t i j t t
q E Z Zσ µ µ

+ +− −= + Variance , 

where 2

ij ii jj ijσ σ σ ρ=  are the components of matrix 2

ijσ =  Q  (see, among others, 

Cont and Tankov (2004)). So, for example, in the case the vector of log-returns 
tX  

follows a NIG process we can rewrite the formulas (5) of mean, variance, skewness 

and kurtosis of final wealth: 

( ) ( )( )1

1 0,i i i i i it t i i t t t t
E t t b r

−

+= − + −x P x µ x s x e  

1 1 1

1

( ) ( )

,

2 2

2 2

1 13

( , ) ( )

[ ] ( ) ( )

k k k k k k k

k k

i j

ij t t t t t i j ij t t

i j ij i j i j

i j i j t t k k k k

q X X E I

I t t t t
b b

δ δ ρ

δ δ ρ β β δ δ
β β δ δ

+ + +

+

− − −

− + +

= = +

+ = − + −

Cov

Variance

 

( )
( ) ( )( )

1
2

3 2

1 1

0

3 5

3 '

W
( )

i i i i i

T

T

T

i i i t t t t t

i

t

t

B t t b

W bσ

−

+ +

=

− +

=
∑ x µ x Q x x µ

Sk  

( )
( )

( ) ( )( )

( ) ( )( ) ( )( )

1 1
2 2

1 1

0 1

4

1 2
224 2

1 1

0

4 6

1
2 2

4 2 2

1 1

0

4 7

6

W
( )

3 '

( )

3 ' 5 '

( )

j j j

T

T

i i i i

T

i i i i i i i i

T

T T

j i

i j i

t

t

T

i i i t t t t

i

t

T

i i i t t t t t t t t

i

t

B B

W

B t t b

W b

B t t b b

W b

σ

σ

σ

− −

+ +

= = +

−

+ +

=

−

+ +

=

= +

− +

+ +

− + +

+

∑∑

∑

∑

i i it t t t t tx Q x' x Q x'

x Q x x µ

x Q x x µ x Q x x µ

Ku

 

Instead, if 
tX  follows a Variance-Gamma process these formulas become: 

( ) ( )( )1 0,i i i i i it t i i t t t tE t t r+= − + −x P x µ x s x e  
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1 1 1 1

( ) ( )

,

1 1

( , ) ( ) [ ]

( ) ( ).

k k k k k k k k k

i j

ij t t t t t ii jj ij t t i j t t

ii jj ij k k i j k k

q X X E Z Z

t t v t t

σ σ ρ µ µ

σ σ ρ µ µ
+ + + +− − − −

+ +

= = + =

= − + −

Cov Variance

 

( )
( ) ( )( )

1
2

3

1 1

0

3

3 ' 2

W
( )

i i i i i

T

T

T

i i t t t t t i

i

t

t

t t v v B

Wσ

−

+ +

=

 − + 
 

=
∑ x µ x Q x x µ

Sk , 

( )
( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

1 1 1
22 2 4

1 1 1 1
0 1 0

4 4

1 2
2

4

1 1 1 1

0

4

6 3

W
( ) ( )

3 1 2 /

.
( )

j j j

T

T T

i

T

T T T

j i i i i
i j i i

t

t t

T

i i i i i t i i

i

t

B B B v t t

W W

B v t t t t v t t

W

σ σ

σ

− − −

+ + + +
= = + =

−

+ + + +

=

−

= − +

 
+ − − + − 

 +

∑∑ ∑

∑

i i i i i i

i i i

t t t t t t t t t

t t t

x Q x' x Q x' x Q x'

x Q x' x µ

Ku

 

Clearly, a more realistic portfolio selection problem should consider the investor’s 

preference for skewness (see, among others, Ortobelli (2001)). Thus under the above 

distributional assumptions and under institutional restrictions of the market (such as 

no short sales and limited liability), all risk-averse investors optimize their portfolio 

choosing the solutions of the following constrained optimization problem: 

( ) ( )

0 1
, ,

1 2

,

min [W ]

. .

[W ] ; W ; W ;

0, 1,..., , 0,..., 1

T
t tT

T T T

j

t

t t t

i t

E m q q

x i N j T

−

≥ ≥ ≤

≥ = = −

x x…

Variance

st

Sk Ku

 

for some mean m skewness 
1q  and kurtosis 

2q . This problem has not generally 

closed form solution. However using arguments similar to those proposed by 

Athayde, and Flôres (2004) based on a tensorial notation for the higher moments we 

can give an implicit analytical solution when unlimited short sales are allowed.  

3. A comparison among Lévy dynamic strategies 

In this section we examine the performances of Lévy processes approaches and we 

compare the Gaussian and Lévy non-Gaussian dynamic portfolio choice strategies 

when short sales are allowed. First, we analyze the optimal dynamic strategies during 

a period of five months, among the riskless return and 5 index-monthly returns from 

04/10/1992 - 12/31/2005 (Down Jones Composite 65, Down Jones Industrials, Down 

Jones Utilities, S&P 500 and S&P 100). We start with a riskless of 0.3884%  and we 

examine the different allocation considering three different implicit term structures. 

Table 1 describes the implicit term structures that we will use in this comparison.  
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In particular, we approximate optimal solutions to the utility functional:  

{ }
0,1,..., 1

1
max  1 exp

t j j T

T
x

E W
a

= −

  
− −  

  
                                         (7) 

where a  (we use 0.5,1,1.5,2a = ) is an indicator of the risk tolerance and 
TW  is 

defined by formula (4). Secondly, we consider the utility function  

( )
( )

2
1 2

if
2

3 2 2

ln ln if
4 2 2

c
cx x x

c
u x

c c c
x x

− <

=

+ − ≥




           

                          (8) 

where for 
2

2x c<  we have a quadratic utility function and for 
2

2x c≥  a 

logarithm utility function (we use 1,2,3,4,5c = ). Thus, we are interested in finding 

optimal solutions to the functional  

{ }
( )( )

0,1,..., 1

max  
t j j T

T
x

E u W

= −

.                                                 (9) 

Clearly we could obtain close form solutions to optimization problem (7) and (9) 

using arguments on the moments and on the Laplace transform. However, since we 

want to value the impact of different distributional assumptions in a mean-variance 

framework we will approximate formulas (7) and (9) using the historical observations 

of the final wealth valued for the optimal mean variance portfolios. In particular, we 

use the same algorithm proposed by Ortobelli et al. (2004) in order to compare the 

different models. Thus, first we consider the optimal strategies (6) for different levels 

of the mean. Then, we select the optimal portfolio strategies on the efficient frontiers 

which are solutions of problem (7) and (9) for different coefficients a  and c . 

Therefore starting by an initial wealth 0 1W =  we compute for every multi-period 

efficient frontier: 

{ }
( )

{ }

0,1,..., 4

( )
1 5

0,1,..., 4

1
max

subject    to

are optimal portfolio strategies (6)

j
j

iN
i

x

j j

u W
N

x

=

=

=

∑

 

Table 1.  Term structures 

 t0 t1 t2 t3 t4 

term 1 0.3884% 0.3984% 0.4084% 0.4184% 0.4284% 

term 2 0.3884% 0.3884% 0.3884% 0.3884% 0.3884% 

term 3 0.3884% 0.3784% 0.3684% 0.3584% 0.3484% 
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where ( ) ( )4
05 0

i i

j j j jW B x p B== +∑  is the i th−  observation of the final wealth and  

( ) ( ) ( )

1, ,[ ,..., ]
i i i

t t n tp p p ′=  is the i th−  observation of the vector of excess returns  

( ) ( )

, , 0,

i i

k t k t tp r r= −   relative to the  t th−  period.  

 

Finally, we obtain Tables 2 and 3 with the approximated maximum expected utility 

considering the three implicit term structures. In fact, we implicitly assume the 

approximation: 

( ) ( )( )( ) ( )

5 5

1

1
.

N
i i

i

u W E u W
N =

≈∑  

Tables 2 and 3 show a superior performance of Lévy non Gaussian models with 

respect to the Gaussian one by the point of view of investors that maximize expected 

Table 2 Maximum expected utility 
{ }

0,1,..., 1

1
max 1-exp

t j j T

T
x

E W
a

= −

  
−  
  

 

for 0.5,1,1.5,2a =  under three different distributional hypotheses: BM, VG, 

and NIG and three different term structures 
 

 TERM1 TERM2 TERM3 

 BM          VG           NIG BM          VG          NIG BM          VG          NIG 

a=0.5 0.8727   0.8731    0.8728 0.8727   0.8731   0.8728 0.8726   0.8732   0.8730 

a=1 0.6468   0.6479    0.6473 0.6471   0.6485   0.6479 0.6477   0.6491   0.6484 

a=1.5 0.5037   0.5053    0.5045 0.5044   0.5062   0.5053 0.5052   0.5073   0.5063 

a=2 0.4117   0.4136    0.4126 0.4127   0.4148   0.4137 0.4138   0.4161   0.4150 

 

Table 3 Maximum expected utility
{ }

( )( )
0,1,..., 1

max
t j j T

T
x

E u W

= −

, where 

( )
( )

21 2 if
2

3 2 2
ln ln if

4 2 2

c
cx x x

c
u x

c c c
x x


 − <
=   
   + − ≥
   

  

, 

for 1, 2,3,4,5c =  under three different distributional hypotheses: BM, VG, and 

NIG and three different term structures 

 

  TERM1 TERM2 TERM3 

  BM        VG        NIG BM          VG          NIG BM          VG          NIG 

c=1 0.9942    0.9973    0.9964 0.9983    1.0025   1.0012 1.0031    1.0083    1.0065 

c=2 1.5396    1.5422    1.5407 1.5404    1.5436   1.5422 1.5419    1.5453    1.5436 

c=3 2.8763    2.8994    2.8880 2.8910    2.9168   2.9043 2.9073    2.9361    2.9225 

c=4 4.3106    4.3799    4.3454 4.3578    4.4359   4.3980 4.4106    4.4974    4.4565 

c=5 5.9522    6.1025    6.0276 6.0572    6.2264   6.1443 6.1745    6.3623    6.2738 
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utility (7) and (9). In particular, the Variance Gamma model presents the best 

performance for different utility functions and term structures. Thus, from an ex-ante 

comparison among Variance Gamma, Normal Inverse Gaussian and Brownian motion 

models, investors characterized by the utility functions (7) and (8) should select 

portfolios assuming a Variance Gamma distribution. 

The term structure determines the biggest differences in the portfolio weights of the 

same strategy and different periods. When the interest rates of the implicit term 

structure are growing (decreasing) we obtain that the investors are more (less) 

attracted to invest in the riskless in the sequent periods. Generally it does not exist a 

common factor between portfolio weights of different periods and of the same 

strategy. However, when we consider the flat term structure (2-nd term structure), the 

portfolio weights change over the time with the same capitalization factor.  

 
Table 4 Ex-post final wealth obtained by the optimal strategies solutions of the 

problem  
{ }

0,1,..., 1

1
max  1 exp

at j j T

T
x

E W

= −

  
− −  

  
 for  a=0.5, a=1, a=1.5, a=2  under three 

different distributional hypotheses: BM, VG, and NIG and three different term 

structures 

 

 TERM1 TERM2 TERM3 

 BM          VG          NIG BM          VG          NIG BM          VG          NIG 

a=0.5 1.0762    1.0805    1.0711 1.0716    1.0755    1.0670 1.0672    1.0966    1.0851 

a=1 1.1319    1.1404    1.1470 1.1498    1.1594    1.1381 1.1401    1.1487    1.1295 

a=1.5 1.1876    1.2304    1.1976 1.2019    1.2154    1.1856 1.1888    1.2269    1.1961 

a=2 1.2433    1.2903    1.2482 1.2540    1.2993    1.2568 1.2617    1.3050    1.2627 

 

Table 5 Ex-post final wealth obtained by the optimal strategies solutions of the 

problem 
{ }

( )( )
0,1,..., 1

max
t j j T

T
x

E u W

= −

, where 

( )
( )

21 2 if
2

3 2 2
ln ln if

4 2 2

c
cx x x

c
u x

c c c
x x


 − <
=   
   + − ≥
   

  

, 

for 1, 2,3,4,5c =  under three different distributional hypotheses: BM, VG, and NIG 

and three different term structures 

 

  TERM1 TERM2 TERM3 

  BM          VG          NIG BM          VG          NIG BM          VG          NIG 

c=1 1.3269    1.3503    1.3241 1.3322    1.3553    1.3279 1.3347    1.3571    1.3294 

c=2 1.1319    1.1404    1.1217 1.1237    1.1594    1.1381 1.1401    1.1487    1.1295 

c=3 1.4383    1.4702    1.4252 1.4364    1.4951    1.4228 1.4320    1.4873    1.4404 

c=4 1.8281    1.9198    1.8299 1.8532    1.9428    1.8261 1.8698    1.9561    1.8622 

c=5 2.3573    2.5194    2.3358 2.3743    2.5583    2.3717 2.4049    2.5812    2.3951 
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In Table 4 and 5 we show the ex-post final wealth under the three term structures for 

the three distributional assumptions and for the two utility functions. The results 

confirm the better performance of the Variance Gamma approach with respect to the 

Normal Inverse Gaussian and Brownian motion ones. Moreover in this ex-post 

comparison we observe a better performance of the Brownian motion with respect to 

the NIG model.  

4   Concluding remarks 

This paper proposes an empirical comparison among three distributional hypotheses 

based on Lévy processes. We discuss the portfolio optimization problem by the point 

of view of investors that maximize either exponential utility functions or quadratic-

logarithm utility functions. Therefore, we propose two models that take into account 

the heavier behavior of log-return distribution tails. The ex-ante empirical comparison 

shows a greater performance of two alternative subordinated Lévy processes. Instead, 

the ex-post comparison, even though it confirms the better behavior of the Variance 

Gamma model, shows a better performance of the Brownian motion model with 

respect to the Normal Inverse Gaussian one. However, several further empirical 

analysis should be necessary to validate the multi-period models here presented based 

on the mean, the variance of the final wealth maybe considering even its skewness 

and kurtosis as suggested by the first part of the paper. 
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