Abstract
This paper presents a robust approach to segmenting text embedded in complex background. Our approach consists of four steps: smart sampling, unsupervised clustering, the Bayesian decision, post-processing. The experimental results show that it works effectively, and is more efficient in removing complex background residues than the popular K-means method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wu, V., Manmatha, R., Riseman, E.: Finding text in images. In: Proceedings of ACM International Conference on Digital Libraries, Philadelphia, pp. 1–10 (1997)
Jain, A.K., Yu, B.: Automatic text location in images and video frames. Pattern Recognition 31(12), 2055–2076 (1998)
Chen, D., Odobez, J-M., Bourlard, H.: Text detection and recognition in images and video frames. Pattern Recognition 3(37), 595–608 (2004)
Ye, Q., Gao, W., Wang, W., Zeng, W.: A robust text detection algorithm in images and video frames. In: 4th IEEE Pacific-Rim Conference on Multimedia, Singapore, pp. 802–806 (2003)
Gllavata, J., Ewerth, R., Stefi, T., Freisleben, B.: Unsupervised Text Segmentation Using Color and Wavelet Features. In: Proceedings of the 3rd International Conference on Image and Video Retrieval, Dublin, Ireland, pp. 216–224 (July 2004)
Fu, L., wang, W., Zhan, Y.: A robust text segmentation approach in complex background based on multiple constraints. In: Ho, Y.-S., Kim, H.J. (eds.) PCM 2005. LNCS, vol. 3768, pp. 594–605. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, W., Fu, L., Gao, W. (2007). Text Segmentation in Complex Background Based on Color and Scale Information of Character Strokes. In: Ip, H.HS., Au, O.C., Leung, H., Sun, MT., Ma, WY., Hu, SM. (eds) Advances in Multimedia Information Processing – PCM 2007. PCM 2007. Lecture Notes in Computer Science, vol 4810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77255-2_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-77255-2_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77254-5
Online ISBN: 978-3-540-77255-2
eBook Packages: Computer ScienceComputer Science (R0)