Abstract
Time lapse video microscopy routinely produces terabyte sized biological image sequence collections, especially in high throughput environments, for unraveling cellular mechanisms, screening biomarkers, drug discovery, image-based bioinformatics, etc. Quantitative movement analysis of tissues, cells, organelles or molecules is one of the fundamental signals of biological importance. The accurate detection and segmentation of moving biological objects that are similar but non-homogeneous is the focus of this paper. The problem domain shares similarities with multimedia video analytics. The grayscale structure tensor fails to disambiguate between stationary and moving features without computing dense velocity fields (i.e. optical flow). In this paper we propose a novel motion detection algorithm based on the flux tensor combined with multi-feature level set-based segmentation, using an efficient additive operator splitting (AOS) numerical implementation, that robustly handles deformable motion of non-homogeneous objects. The flux tensor level set framework effectively handles biological video segmentation in the presence of complex biological processes, background noise and clutter.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eggert, U.S., Mitchison, T.J.: Small molecule screening by imaging. Curr. Opin. Chem. Biol. 10, 232–237 (2006)
Zhou, X., Wong, S.: High content cellular imaging for drug development. IEEE Signal Processing Magazine 23, 170–174 (2006)
Nath, S., Palaniappan, K., Bunyak, F.: Four-color level set segmentation using generalized Voronoi neighborhoods for cell migration. Medical Image Analysis (2007)
Davis, P.J., Kosmacek, E.A., Sun, Y., Ianzine, F., Mackey, M.A.: The large scale digital cell analysis system. J. Microscopy (in press, 2007)
Palaniappan, K., Jiang, H., Baskin, T.: Non-rigid motion estimation using the robust tensor method. In: IEEE Comp. Vision. Patt. Recog. Workshop on Articulated and Nonrigid Motion, Washington DC, USA, pp. 25–32 (2004)
Nath, S., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006)
Bunyak, F., Palaniappan, K., Nath, S., Baskin, T., Dong, G.: Quantitative cell motility for in vitro wound healing using level set-based active contour tracking. In: ISBI. Proc. 3rd IEEE Int. Symp. Biomed. Imaging, pp. 1040–1043 (2006)
Nath, S., Bunyak, F., Palaniappan, K.: Robust tracking of migrating cells using four-color level set segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 920–932. Springer, Heidelberg (2006)
Nath, S., Palaniappan, K., Bunyak, F.: Accurate spatial neighborhood relationships for arbitrarily-shaped objects using Hamilton-Jacobi GVD. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 421–431 (2007)
Bunyak, F., Palaniappan, K., Nath, S., Seetharaman, G.: Fux tensor constrained geodesic active contours with sensor fusion for persistent object tracking. J. Multimedia (in Press, 2007)
Weele, C., Jiang, H., et al.: A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Plant. Phys. 132, 1138–1148 (2003)
Shenoy, V., Tambe, D., Prasad, A., Theriot, J.: A kinematic description of the trajectories of listeria monocytogenes propelled by actin comet tails. In: Proc. Natl. Acad. Sci., USA, vol. 104, pp. 8229–8234 (2007)
Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion, shape. Intern. J. Computer Vis. 72, 195–215 (2007)
Jeon, M., Alexander, M., Pedrycz, W., Pizzi, N.: Unsupervised hierarchical image segmentation with level set and additive operator splitting. Patt. Recog. Letters 26, 1461–1469 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Palaniappan, K., Ersoy, I., Nath, S.K. (2007). Moving Object Segmentation Using the Flux Tensor for Biological Video Microscopy. In: Ip, H.HS., Au, O.C., Leung, H., Sun, MT., Ma, WY., Hu, SM. (eds) Advances in Multimedia Information Processing – PCM 2007. PCM 2007. Lecture Notes in Computer Science, vol 4810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77255-2_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-77255-2_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77254-5
Online ISBN: 978-3-540-77255-2
eBook Packages: Computer ScienceComputer Science (R0)