Abstract
There are many applications, for example image copyright protection, where transformed images of a given test image need to be identified. The solution to the identification problem consists of two main stages. In stage one, certain representative features are detected for all images. In stage two, the representative features of the test image and the stored images are compared to identify the transformed images for the test image. We have reported the technique to extract robust representative features – corners – in our previous work [1]. This paper will focus on our stage-two work on effective corner matching technique for transformed image identification. Experimental results show that the proposed corner matching technique is very much effective in identifying the transformed images for a given test image.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Awrangjeb, M., Lu, G.: An Affine Resilient Curvature Scale-space Corner Detector. In: Proc. Int. Conf. on Acoustics, Speech, and Signal Proces, Hawaii, USA, vol. 1, pp. 1233–1236 (2007)
Awrangjeb, M., Murshed, M.: Robust Signature-based Geometric Invariant Copyright Protection. In: Proc. Int. Conf. on Image Proces, Atlanta, USA, pp. 1961–1964 (2006)
Lu, G.: Multimedia Database Management Systems. Artech House Inc., Norwood (1999)
Mokhtarian, F., Suomela, R.: Robust Image Corner Detection Through Curvature Scale Space. IEEE Trans. on Pat. Anal. and Mach. Intel. 20(12), 1376–1381 (1998)
Mokhtarian, F., Mohanna, F.: Enhancing the Curvature Scale Space Corner Detector. In: Proc. Scandinavian Conf. on Image Analysis, pp. 145–152 (2001)
Zhou, D., Li, G., Liu, Y.: Effective Corner Matching Based on Delaunay Triangulation. In: Proc. Int. Conf. on Robotics and Automation, pp. 2730–2733 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide Baseline Stereo From Maximally Stable External Regions. In: Proc. British Machine Vision Conference, pp. 384–393 (2002)
Jung, I., Lacroix, S.: A Robust Interest Points Matching Algorithm. In: Proc. Int. Conf. on Computer Vision, vol. 2, pp. 538–543 (2001)
You, J., Pissaloux, E., Cohen, H.: A Hierarchical Image Matching Scheme Based on the Dynamic Detection of Interesting Points. In: Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2467–2470 (1995)
Lee, K., Kim, Y., Myung, H., Kim, J., Bien, Z.: A Corner Matching Algorithm with Uncertainty Handling Capability. In: Proc. Int. Conf. on Fuzzy Systems, vol. 3, pp. 1469–1474 (1997)
Rutkowski, W.: Recognition of Occluded Shapes Using Relaxation. Comp. Graph. and Img. Process 19(2), 111–128 (1982)
Horaud, R., Skordas, T.: Stereo Correspondence Through Feature Grouping and Maximal Cliques. IEEE Trans. on Pat. Anal. and Mach. Intel. 11(11), 1168–1180 (1989)
Nasrabadi, N., Li, W.: Object Recognition by a Hopfield Neural Network. IEEE Trans. on Sys., Man and Cyb. 21(6), 1523–1535 (1991)
Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, London (1999)
Klein, F.: Elementary Mathematics From an Advanced Standpoint: Geometry. The Macmillan Company, New York (1939)
Hopcroft, J., Huttenlocher, D.: On Matching Planar Points Sets Under Affine Transformations. Technical Report TR. 89-986, Department of Computer Sceince, Cornell University, New York (1989)
Awrangjeb, M., Lu, G.: A Robust Corner Matching Technique. In: Proc. Int. Conf. on Multimedia and Expo., Beijing, China, pp. 1483–1486 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Awrangjeb, M., Lu, G. (2007). Effective Corner Matching for Transformed Image Identification. In: Ip, H.HS., Au, O.C., Leung, H., Sun, MT., Ma, WY., Hu, SM. (eds) Advances in Multimedia Information Processing – PCM 2007. PCM 2007. Lecture Notes in Computer Science, vol 4810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77255-2_92
Download citation
DOI: https://doi.org/10.1007/978-3-540-77255-2_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77254-5
Online ISBN: 978-3-540-77255-2
eBook Packages: Computer ScienceComputer Science (R0)