Skip to main content

SAR Speckle Mitigation by Fusing Statistical Information from Spatial and Wavelet Domains

  • Conference paper
Advances in Multimedia Information Processing – PCM 2007 (PCM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4810))

Included in the following conference series:

  • 1190 Accesses

Abstract

We propose a novel algorithm for the de-speckling of SAR images which exploits a priori statistical information from both the spatial and wavelet domains. In the spatial domain, we apply the Method-of-Log-Cumulants (MoLC), which is based on Mellin transform, in order to locally estimate parameters corresponding to an assumed Generalized Gaussian Rayleigh (GGR) model for the image. We then compute classical cumulants for the image and speckle models and relate them into their wavelet domain counterparts. Using wavelet cumulants, we separately derive parameters corresponding to an assumed generalized Gaussian (GG) model for the image and noise wavelet coefficients. Finally, we feed the resulting parameters into a Bayesian maximum a priori (MAP) estimator, which is applied to the wavelet coefficients of the log-transformed SAR image. Our proposed method outperforms several recently proposed de-speckling techniques both visually and in terms of different objective measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xie, H., Pierce, L., Ulaby, F.: SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans. Geosci. Remote Sensing 40, 2196–2212 (2002)

    Article  Google Scholar 

  2. Solb ø, S., Eltoft, T.: Homomorphic Wavelet-Based Statistical De-speckling of SAR Images. IEEE Trans. on Geosci. and Remote Sensing 42(4) (April 2004)

    Google Scholar 

  3. Argenti, F., Rovai, N., Alparone, L.: De-speckling SAR Images In The Undecimated Wavelet Domin: A MAP Approach. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings, vol. 4, pp. 541–544 (March 2005)

    Google Scholar 

  4. Achim, A., Kuruoglu, E., Zerubia, J.: SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Transactions on Image Processing 15(9), 2686–2693 (2006)

    Article  Google Scholar 

  5. Moser, G., Zerubia, J., Serpico, S.B.: SAR amplitude probability density function estimation based on a Generalized Gaussian scattering model. Image Processing, IEEE Transactions on 15(6), 1429–1442 (2006)

    Article  Google Scholar 

  6. Nicolas, J.M.: Introduction aux statistiques de deuxième espèce: applications des logmoments et des log-cumulants à l’analyse des lois d’images radar. Traitement du Signal 19, 139–167 (2002)

    MATH  Google Scholar 

  7. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications, Univ. Bristol, Bristol, U.K., Tech. Rep. BS8 1Tw (1995)

    Google Scholar 

  8. Simoncelli, E., Adelson, E.: Noise removal via Bayesian wavelet coring. In: Third Int’l Conf on Image Proc, vol. I, pp. 379–382 (September 1996)

    Google Scholar 

  9. Achim, A., Kuruoglu, E.: Image denoising using bivariate α stable distributions in the complex wavelet domain. IEEE Signal Processing Letters 12(1) (January 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Horace H.-S. Ip Oscar C. Au Howard Leung Ming-Ting Sun Wei-Ying Ma Shi-Min Hu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lim, K., Canagarajah, N., Achim, A. (2007). SAR Speckle Mitigation by Fusing Statistical Information from Spatial and Wavelet Domains. In: Ip, H.HS., Au, O.C., Leung, H., Sun, MT., Ma, WY., Hu, SM. (eds) Advances in Multimedia Information Processing – PCM 2007. PCM 2007. Lecture Notes in Computer Science, vol 4810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77255-2_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77255-2_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77254-5

  • Online ISBN: 978-3-540-77255-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics