Abstract
In the recently introduced model for cleaning a graph with brushes, we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even). We then use a differential equations method to find the (asymptotic) number of brushes needed to clean a random d-regular graph using this algorithm. As well as the case for general d, interesting results for specific values of d are examined. We also state various open problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980)
Bollobás, B.: Random graphs, Combinatorics. In: Temperley, H.N.V. (ed.) London Mathematical Society Lecture Note Series, vol. 52, pp. 80–102. Cambridge University Press, Cambridge (1981)
Kim, J.H., Wormald, N.C.: Random matchings which induce Hamilton cycles and hamiltonian decompositions of random regular graphs. Journal of Combinatorial Theory, Series B 81, 20–44 (2001)
Łuczak, T.: Sparse random graphs with a given degree sequence. In: Frieze, A., Łuczak, T. (eds.) Random Graphs, vol. 2, pp. 165–182. Wiley, New York (1992)
McKeil, S.: Chip Firing Cleaning Processes. MSc Thesis, Dalhousie University (2007)
Messinger, M.E., Nowakowski, R.J., Prałat, P.: Cleaning a Network with Brushes. Theoretical Computer Science (accepted)
Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCarron, J., DeMarco, P.: Maple 10 Programming Guide. Maplesoft, Waterloo, Canada (2005)
Robinson, R.W., Wormald, N.C.: Almost all cubic graphs are hamiltonian. Random Structures and Algorithms 3, 117–125 (1992)
Wormald, N.C.: Analysis of greedy algorithms on graphs with bounded degrees. EuroComb 2001. Discrete Mathematics 273, 235–260 (2003)
Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)
Wormald, N.C.: The asymptotic connectivity of labelled regular graphs. Journal of Combinatorial Theory, Series B 31, 156–167 (1981)
Wormald, N.C.: The differential equation method for random graph processes and greedy algorithms. In: Karoński, M., Prömel, H.J. (eds.) Lectures on Approximation and Randomized Algorithms. PWN, Warsaw, pp. 73–155 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Messinger, ME., Prałat, P., Nowakowski, R.J., Wormald, N. (2007). Cleaning Random d-Regular Graphs with Brushes Using a Degree-Greedy Algorithm. In: Janssen, J., Prałat, P. (eds) Combinatorial and Algorithmic Aspects of Networking. CAAN 2007. Lecture Notes in Computer Science, vol 4852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77294-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-77294-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77293-4
Online ISBN: 978-3-540-77294-1
eBook Packages: Computer ScienceComputer Science (R0)