Skip to main content

On the Information Theoretic Implications of Embodiment – Principles and Methods

  • Chapter
50 Years of Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

Abstract

Embodied intelligent systems are naturally subject to physical constraints, such as forces and torques (due to gravity and friction), energy requirements for propulsion, and eventual damage and degeneration. But embodiment implies far more than just a set of limiting physical constraints; it directly supports the selection and processing of information. Here, we focus on an emerging link between information and embodiment, that is, on how embodiment actively supports and promotes intelligent information processing by exploiting the dynamics of the interaction between an embodied system and its environment. In this light the claim that “intelligence requires a body” means that embodied systems actively induce information structure in sensory inputs, hence greatly simplifying the major challenge posed by the need to process huge amounts of information in real time. The structure thus induced crucially depends on the embodied system’s morphology and materials. From this perspective, behavior informs and shapes cognition as it is the outcome of the dynamic interplay of physical and information theoretic processes, and not the end result of a control process that can be understood at any single level of analysis. This chapter reviews the recent literature on embodiment, elaborates some of the underlying principles, and shows how robotic systems can be employed to characterize and quantify the notion of information structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M.L.: Embodied cognition: a field guide. Artif. Intelligence 149, 91–130 (2003)

    Article  Google Scholar 

  2. Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991)

    Article  Google Scholar 

  3. Chiel, H., Beer, R.: The brain has a body: adaptive behavior emerges from interactions of nervous system, body, and environment. Trends in Neurosciences 20, 553–557 (1997)

    Article  Google Scholar 

  4. Clark, A.: An embodied cognitive science? Trends in Cognitive Sciences 3(9), 345–351 (1999)

    Article  Google Scholar 

  5. Glenberg, A.M., Kaschak, M.P.: Grounding language in action. Psychonom. Bull. and Rev. 9(3), 558–565 (2002)

    Google Scholar 

  6. Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. Springer, Heidelberg (2004)

    Google Scholar 

  7. Lakoff, G., Johnson, M.: Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought. Basic Books, New York (1999)

    Google Scholar 

  8. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a survey. Connection Science 15(4), 151–190 (2003)

    Article  Google Scholar 

  9. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  10. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way we Think – A New View of Intelligence. MIT Press, Cambridge, MA (2007)

    Google Scholar 

  11. Smith, L., Thelen, E.: Development as a dynamic system. Trends in Cognitive Sciences 7(8), 343–348 (2003)

    Article  Google Scholar 

  12. Smith, L., Gasser, M.: The development of embodied cognition: six lessons from babies. Artificial Life 11(1/2), 13–30 (2005)

    Article  Google Scholar 

  13. Sporns, O.: Embodied cognition. In: Arbib, M. (ed.) Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA (2003)

    Google Scholar 

  14. Thompson, E., Varela, F.J.: Radical embodiment: neural dynamics and consciousness. Trends in Cog. Sci. 5(10), 418–425 (2001)

    Article  Google Scholar 

  15. Wilson, M.: Six views of embodied cognition. Psychonom. Bull. Rev. 9(4), 625–636 (2002)

    Google Scholar 

  16. Ziemke, T.: Situated and embodied cognition. Cog. Sys. Res. 3(3), 271–554 (2002)

    Article  Google Scholar 

  17. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  18. Palmeri, T.J., Gauthier, I.: Visual object understanding. Nat. Rev. Neurosci. 5, 291–304 (2004)

    Article  Google Scholar 

  19. Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Current Opinion in Neurobiology 22, 162–168 (2002)

    Article  Google Scholar 

  20. Dewey, J.: The reflex arc concept in psychology. Psychol. Rev. 3, 357–370 (1896)

    Article  Google Scholar 

  21. Piaget, J.: The Origins of Intelligence. Routledge, New York (1953)

    Google Scholar 

  22. Edelman, G.M.: Neural Darwinism. Basic Books, New York (1987)

    Google Scholar 

  23. Pfeifer, R., Scheier, C.: Sensory-motor coordination: the metaphor and beyond. Robotics and Autonomous Systems 20, 157–178 (1997)

    Article  Google Scholar 

  24. Lungarella, M., Pfeifer, R.: Robots as cognitive tools: an information-theoretic analysis of sensory-motor data. In: Proc. of 1st Int. Conf. on Humanoid Robotics, pp. 245–252 (2001)

    Google Scholar 

  25. O’Regan, J.K., Noe, A.: A sensorimotor account of vision and visual consciousness. Beh. Brain Sci. 24, 939–1031 (2001)

    Article  Google Scholar 

  26. Nolfi, S.: Power and limit of reactive agents. Neurocomputing 49, 119–145 (2002)

    Article  Google Scholar 

  27. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)

    Article  Google Scholar 

  28. Lungarella, M., Pegors, T., Bulwinkle, D., Sporns, O.: Methods for quantifying the informational structure of sensory and motor data. Neuroinformatics 3(3), 243–262 (2005)

    Article  Google Scholar 

  29. Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Computational Biology 2(10), 1301–1312 (2006)

    Article  Google Scholar 

  30. Harnad, S.: Cognition is categorization. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, Elsevier, Amsterdam (2005)

    Google Scholar 

  31. Poirier, P., Hardy-Vallee, B., DePasquale, J.F.: Embodied categorization. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, Elsevier, Amsterdam (2005)

    Google Scholar 

  32. Gallese, V., Lakoff, G.: The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cog. Neuropsychol. 22(3/4), 455–479 (2005)

    Article  Google Scholar 

  33. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton-Mifflin, Boston (1979)

    Google Scholar 

  34. Bajcsy, R.: Active perception. Proc. of the IEEE 76(8), 996–1005 (1988)

    Article  Google Scholar 

  35. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)

    Article  Google Scholar 

  36. Ballard, D.: Animate vision. Artificial Intelligence 48, 57–86 (1991)

    Article  Google Scholar 

  37. Churchland, P.S., Ramachandran, V., Sejnowski, T.: A critique of pure vision. In: Koch, C., Davis, J. (eds.) Large-Scale Neuronal Theories of the Brain, MIT Press, Cambridge, MA (1994)

    Google Scholar 

  38. Noe, A.: Action in Perception. MIT Press, Cambridge, MA (2004)

    Google Scholar 

  39. Lungarella, M., Sporns, O.: Information self-structuring: key principle for learning and development. In: Proc. of 4 thInt. Conf. on Development and Learning, pp. 25–30 (2005)

    Google Scholar 

  40. Metta, G., Fitzpatrick, P.: Early integration of vision and manipulation. Adaptive Behavior 11(2), 109–128 (2003)

    Article  Google Scholar 

  41. Barlow, H.B.: The exploitation of regularities in the environment by the brain. Beh. Brain Sci. 24, 602–607 (2001)

    Article  Google Scholar 

  42. Olshausen, B., Field, D.J.: Sparse coding of sensory inputs. Curr. Op. Neurobiol. 14, 481–487 (2004)

    Article  Google Scholar 

  43. Simoncelli, E., Olshausen, B.: Natural image statistics and neural representation. Ann. Rev. Neurosci. 24, 1193–1216 (2001)

    Article  Google Scholar 

  44. Webb, B.: Can robots make good models of biological behavior? Behavioral and Brain Sciences 24, 1033–1050 (2001)

    Google Scholar 

  45. Sporns, O.: What neuro-robotic models can tell us about neural and cognitive development. In: Mareschal, D. (ed.) Neuroconstructivism. Perspectives and Prospects, vol. II, Oxford University Press, Oxford, UK (2005)

    Google Scholar 

  46. Woods, A.T., Newell, F.: Visual, haptic, and cross-modal recognition of objects and scenes. J. of Physiology – Paris 98(1–3), 147–159 (2004)

    Article  Google Scholar 

  47. Harman, K.L., Humphrey, G.K., Goodale, M.A.: Active manual control of object views facilitates visual recognition. Curr. Biol. 9(22), 1315–1318 (1999)

    Article  Google Scholar 

  48. Vuong, Q.C., Tarr, M.J.: Rotation direction affects object recognition. Vis. Res. 44(14), 1717–1730 (2004)

    Article  Google Scholar 

  49. James, K.H., Humphrey, G.H., Goodale, M.A.: Manipulating and recognizing virtual objects: where the action is. Canad. J. of Exp. Psych. 55(2), 113–122 (2001)

    Google Scholar 

  50. Wexler, M., van Boxtel, J.J.A.: Depth perception by the active observer. Trends in Cognitive Sciences 9(9), 431–438 (2005)

    Article  Google Scholar 

  51. Gibson, E.J., Pick, A.D.: An Ecological Approach to Perceptual Learning and Development. Oxford University Press, Oxford (2000)

    Google Scholar 

  52. Lewkowicz, D.J.: Perception of serial order in infants. Dev. Sci. 7(2), 175–184 (2004)

    Article  Google Scholar 

  53. Bahrick, L.E., Lickliter, R., Flom, R.: Intersensory redundancy guides the development of selective attention, perception, and cognition in infancy. Curr. Dir. Psychol. Sci. 13(3), 99–102 (2004)

    Article  Google Scholar 

  54. Lewkowicz, D.J.: The development of intersensory temporal perception: an epigenetic systems/limitations view. Psychol. Bull. 126(2), 281–308 (2000)

    Article  Google Scholar 

  55. Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  56. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  57. Pfeifer, R., Iida, F., Bongard, J.C.: New robotics: design principles for intelligent systems. Artificial Life 11(1/2), 99–120 (2005)

    Article  Google Scholar 

  58. Geng, T., Porr, B., Worgotter, F.: Fast biped walking with a sensor-driven neuronal controller and real-time online learning. Int. J. of Robotics Research 25(3), 243–259 (2006)

    Article  Google Scholar 

  59. Paul, C., Lungarella, M., Iida, F.(eds.): Morphology, control, and passive dynamics. Robotics and Autonomous Systems 54(8), 617–718 (2006)

    Article  Google Scholar 

  60. Lungarella, M., Berthouze, L.: On the interplay between morphological, neural, and environmental dynamics: a robotic case-study. Adaptive Behavior 10(3/4), 223–241 (2002)

    Article  Google Scholar 

  61. Tedrake, R., Zhang, T.W., Seung, H.S.: Stochastic policy gradient reinforcement learning on a simple 3D biped. In: Proc. of 10 th Int. Conf. on Intelligent Robots and Systems, pp. 3333–3338 (2004)

    Google Scholar 

  62. Lichtensteiger, L., Pfeifer, R.: An optimal sensory morphology improves adaptability of neural network controllers. In: Hochet, B., Acosta, A.J., Bellido, M.J. (eds.) PATMOS 2002. LNCS, vol. 2451, pp. 850–855. Springer, Heidelberg (2002)

    Google Scholar 

  63. Bjorklund, E., Green, B.: The adaptive nature of cognitive immaturity. American Psychologist 47(1), 46–54 (1992)

    Article  Google Scholar 

  64. Bjorklund, E.: The role of immaturity in human development. Psychological Bulletin 122(2), 153–169 (1997)

    Article  Google Scholar 

  65. Turkewitz, G., Kenny, P.: Limitations on input as a basis for neural organization and perceptual development: a preliminary theoretical statement. Dev. Psychobio. 15(4), 357–368 (1982)

    Article  Google Scholar 

  66. Bernstein, N.: The Co-ordination and Regulation of Movements Oxford: Pergamon. Pergamon, Oxford (1969)

    Google Scholar 

  67. Mussa-Ivaldi, F.A., Bizzi, E.: Motor learning through the combination of motor primitives. Phil. Trans. Roy. Soc. Lond. B 355, 1755–1769 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeifer, R., Lungarella, M., Sporns, O., Kuniyoshi, Y. (2007). On the Information Theoretic Implications of Embodiment – Principles and Methods. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics