Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4840))

Included in the following conference series:

Abstract

One of the first steps of any visual system is that of locating suitable interest points, ‘salient regions’, in the scene, to detect events, and eventually to direct gaze toward these locations. In the last few years, object-based visual attention models have received an increasing interest in computational neuroscience and in computer vision, the problem, in this case, being that of creating a model of ‘objecthood’ that eventually guides a saliency mechanism. We present here an model of visual attention based on the definition of ‘proto-objects’ and show its instantiation on a humanoid robot. Moreover we propose a biological plausible way to learn certain Gestalt rules that can lead to proto-objects.

This work was supported by EU project RobotCub (IST- 2004-004370) and CONTACT (NEST-5010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cave, K., Bichot, N.: Visuospatial attention: beyond a spotlight model. Psychonomic Bulletin & Review 6, 204–223 (1999)

    Article  Google Scholar 

  2. Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)

    Article  Google Scholar 

  3. O’Regan, J.: Solving the “real” mysteries of visual perception: the world as an outside memory. Canadian Journal of Psychology 46, 461–488 (1992)

    Article  Google Scholar 

  4. Maturana, R., Varela, F.: Autopoiesis and Cognition: The Realization of the Living. D.Reidel Publishing Co., Dordecht (1980)

    Book  Google Scholar 

  5. van Gelder, T., Port, R.: It’s about time: An overview of the dynamical approach to cognition. In: van Gelder, T., Port, R. (eds.) Mind as motion - Explorations in the Dynamics of Cognition, MIT Press, Cambridge, MA (1995)

    Google Scholar 

  6. Craighero, L., Fadiga, L., Rizzolatti, G., Umilta’, C.: Action for perception: a motor-visual attentional effect. J. Exp. Psychol. Hum. Percept. Perform. 25, 1673–1692 (1999)

    Article  Google Scholar 

  7. Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Visuomotor neurons: ambiguity of the discharge or ’motor’ perception? Int. J. Psychophysiol. 35, 165–177 (2000)

    Article  Google Scholar 

  8. Fischer, M.H., Hoellen, N.: Space- and object-based attention depend on motor intention. The Journal of General Psychology 131, 365–378 (2004)

    Google Scholar 

  9. Scholl, B.J.: Objects and attention: the state of the art. Cognition 80, 1–46 (2001)

    Article  Google Scholar 

  10. Rensink, R.A., O’Regan, J.K., Clark, J.J.: To see or not to see: The need for attention to perceive changes in scenes. Psychological Science 8(5), 368–373 (1997)

    Article  Google Scholar 

  11. Rensink, R.A.: Seeing, sensing, and scrutinizing. Vision Research 40(10–12), 1469–1487 (2000)

    Article  Google Scholar 

  12. Palmer, S., Rock, I.: Rethinking perceptual organization: the role of uniform connectedness. Psychonomic Bulletin & Review 1(1), 29–55 (1994)

    Article  Google Scholar 

  13. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  14. Milanese, R., Gil, S., Pun, T.: Attentive mechanisms for dynamic and static scene analysis. Optical Engineering 34, 2428–2434 (1995)

    Article  Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)

    Article  Google Scholar 

  16. Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)

    Article  Google Scholar 

  17. Sun, Y., Fisher, R.: Object-based visual attention for computer vision. Artificial Intelligence 146, 77–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pylyshyn, Z.W.: Visual indexes, preconceptual objects, and situated vision. Cognition 80(1-2), 127–158 (2001)

    Article  Google Scholar 

  19. Metta, G., Fitzpatrick, P.: Early integration of vision and manipulation. Adaptive Behavior 11, 109–128 (2003)

    Article  Google Scholar 

  20. Orabona, F.: Learning and Adptation in Computer Vision. PhD thesis, University of Genoa (2007)

    Google Scholar 

  21. Sandini, G., Tagliasco, V.: An anthropomorphic retina-like structure for scene analysis. Computer Vision, Graphics and Image Processing 14, 365–372 (1980)

    Article  Google Scholar 

  22. Wolfe, J.M., Gancarz, G.: Guided search 3.0. In: Lakshminarayanan, V. (ed.) Basic and Clinical Applications of Vision Science, pp. 189–192. Kluwer Academic, Dordrecht, Netherlands (1996)

    Google Scholar 

  23. Smirnakis, S.M., Berry, M.J., Warland, D.K., Bialek, W., Meister, M.: Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997)

    Article  Google Scholar 

  24. Billock, V.A.: Cortical simple cells can extract achromatic information from the multiplexed chromatic and achromatic signals in the parvocellular pathway. Vision Research 35, 2359–2369 (1995)

    Article  Google Scholar 

  25. Mallot, H.A., von Seelen, W., Giannakopoulos, F.: Neural mapping and space-variant image processing. Neural Networks 3(3), 245–263 (1990)

    Article  Google Scholar 

  26. Li, X., Yuan, T., Yu, N., Yuan, Y.: Adaptive color quantization based on perceptive edge protection. Pattern Recognition Letters 24, 3165–3176 (2003)

    Article  Google Scholar 

  27. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, M., Munk, W., Reitboeck, H.J.: Coherent oscillations: A mechanism of feature linking in the visual cortex? Biological Cybernetics 60, 121–130 (1988)

    Article  Google Scholar 

  28. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–336 (1989)

    Article  Google Scholar 

  29. De Smet, P., Pires, R.L.V.: Implementation and analysis of an optimized rainfalling watershed algorithm. In: Proc. of SPIE, VCIP’2000, vol. 3974, pp. 759–766 (2000)

    Google Scholar 

  30. Wan, S., Higgins, W.: Symmetric region growing. IEEE Trans. on Image Processing 12(9), 1007–1015 (2003)

    Article  Google Scholar 

  31. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  32. Melcher, D., Kowler, E.: Shapes, surfaces and saccades. Vision Research 39, 2929–2946 (1999)

    Article  Google Scholar 

  33. Tipper, S.P.: Object-centred inhibition of return of visual attention. Quarterly Journal of Experimental Psychology 43A, 289–298 (1991)

    Article  Google Scholar 

  34. Itti, L., Koch, C.: Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging 10(1), 161–169 (2001)

    Article  Google Scholar 

  35. Natale, L., Orabona, F., Berton, F., Metta, G., Sandini, G.: From sensorimotor development to object perception. In: Proc. of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, pp. 226–231 (2005)

    Google Scholar 

  36. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for local ”association field”. Vision Research 33(2), 173–193 (1993)

    Article  Google Scholar 

  37. Schmidt, K., Goebel, R., Löwel, S., Singer, W.: The perceptual grouping criterion of collinearity is reflected by anisotropies of connections in the primary visual cortex. European Journal of Neuroscience 5(9), 1083–1084 (1997)

    Article  Google Scholar 

  38. Grossberg, S., Mingolla, E.: Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept. Psychophys. 38, 141–171 (1985)

    Article  Google Scholar 

  39. Guy, G., Medioni, G.: Inferring global perceptual contours from local features. Int. J. of Computer Vision 20, 113–133 (1996)

    Article  Google Scholar 

  40. Li, Z.: A neural model of contour integration in the primary visual cortex. Neural Computation 10, 903–940 (1998)

    Article  Google Scholar 

  41. Sigman, M., Cecchi, G.A., Gilbert, C.D., Magnasco, M.O.: On a common circle: Natural scenes and gestalt rules. PNAS 98(4), 1935–1940 (2001)

    Article  Google Scholar 

  42. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. of ICCV 2001, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  43. Morrone, M., Burr, D.: Feature detection in human vision: A phase dependent energy model. Proc. Royal Soc. of London B 235, 221–245 (1988)

    Article  Google Scholar 

  44. Knutsson, H.: Representing local structure using tensors. In: Proceedings 6th Scandinavian Conference on Image Analysis, Oulu, Finland, pp. 244–251 (1989)

    Google Scholar 

  45. Prodöhl, C., Würtz, R.P., von der Malsburg, C.: Learning the gestalt rule of collinearity from object motion. Neural Computation 15, 1865–1896 (2003)

    Article  MATH  Google Scholar 

  46. Coppola, D.M., Purves, H.R., McCoy, A.N., Purves, D.: The distribution of oriented contours in the real world. PNAS 95, 4002–4006 (1998)

    Article  Google Scholar 

  47. Fitzpatrick, P., Metta, G.: Grounding vision through experimental manipulation. Philos. trans. - Royal Soc., Math. phys. eng. sci. 361(1811), 2185–2615 (2003)

    MathSciNet  Google Scholar 

  48. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orabona, F., Metta, G., Sandini, G. (2007). A Proto-object Based Visual Attention Model. In: Paletta, L., Rome, E. (eds) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. WAPCV 2007. Lecture Notes in Computer Science(), vol 4840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77343-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77343-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77342-9

  • Online ISBN: 978-3-540-77343-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics