Skip to main content

Biologically Inspired Framework for Learning and Abstract Representation of Attention Control

  • Conference paper
Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint (WAPCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4840))

Included in the following conference series:

Abstract

The goal of this research is to develop a framework that enables artificial agents to learn active control of their attention as a means toward efficient planning, decision-making, and recognition. The proposed method is inspired by recent findings in psychology and neuroscience that give rise to the assumption that sequential firing of mirror neurons are connected with prediction, recognition, and planning. As these capabilities are connected to active perception, we hypothesize that simulated sequential mirror neurons can provide an abstract representation of learned attention control.

The proposed framework consists of three phases. The first phase is designed for learning active control of attention using reinforcement learning. In the second phase, sequential concepts are extracted from the agent’s experience and sequential mirror neurons are generated. In the last phase the concepts represented by these sequential mirror neurons are employed for higher level motor-planning and control of attention, as well as recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rizzolatti, G., Gentilucci, M.: Motor and visual-motor functions of the premotor cortex. In: Rakic, P., Singer, W. (eds.) Neurobiology of Neocortex, pp. 269–284. Wiley, Chichester (1988)

    Google Scholar 

  2. Mobahi, H., Ahmadabadi, M.N., Araabi, B.N.: A Biologically Inspired Method for Conceptual Imitation using Reinforcement Learning. Journal of Applied Artificial Intelligence 21(3), 155–183 (2007)

    Article  Google Scholar 

  3. Falck-Ytter, T., Gredbäck, G., von Hofsten, C.: Infants Predict other people’s action goals. Nature Neuroscience 9, 878–879 (2006)

    Article  Google Scholar 

  4. Valpola, H.: Development of Representations, Categories and Concepts-a Hypothesis. In: Proc. of the 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, pp. 593–599 (2005)

    Google Scholar 

  5. Gilbert, C.D., Sigman, M., Crist, R.E.: The neural basis of perceptual learning. Neuron 31, 681–697 (2001)

    Article  Google Scholar 

  6. Miller, E.K.: The prefrontal cortex and cognitive control. Nature Reviews Neuroscience 1, 59–65 (2000)

    Article  Google Scholar 

  7. Rybak, I.A., Gusakova, V.I., Golovan, A.V., Podladchikova, L.N., Shevtsova, N.A.: A model of attention-guided visual perception and recognition. Vision Research 38, 2387–2400 (1998)

    Article  Google Scholar 

  8. Triesch, J., Ballard, D.H., Hayhoe, M.M., Sullivan, B.T.: What you see is what you need. Journal of Vision 3(1), 86–94 (2003)

    Article  Google Scholar 

  9. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research 45, 205–231 (2005)

    Article  Google Scholar 

  10. Clark, A.: Where brain, body, and world collide. Journal of Cognitive Systems Research 1, 5–17 (1999)

    Article  Google Scholar 

  11. Didday, R.L., Arbib, M.A.: Eye Movements and Visual Perception: A “Two Visual System” Model. Int. J. Man-Machine Stud. 7, 547–569 (1975)

    Article  MATH  Google Scholar 

  12. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5, 1–7 (2004)

    Article  Google Scholar 

  13. Tsotsos, J.K.: Analyzing vision at the complexity level. Behavioral and Brain Sciences 13, 423–469 (1990)

    Article  Google Scholar 

  14. Itti, L., Koch, C.: Computational Modeling of Visual Attention. Nature Reviews Neuroscience 2, 195–203 (2001)

    Article  Google Scholar 

  15. Cowey, A.: Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimiri sciureus. Journal of Neurophysiology 27, 266–393 (1964)

    Google Scholar 

  16. Stone, J., Fukuda, Y.: Properties of cat retinal ganglion cells: a comparison of W-cell with X- and Y-cells. Journal of Neurophysiology 37, 722–748 (1974)

    Google Scholar 

  17. Wilson, J.R., Sherman, S.M.: Receptive-field characteristics of neurons in cat striate cortex: changes with visual field eccentricity. Journal of Neurophysiology 39, 512–533 (1976)

    Google Scholar 

  18. Van Essen, D.: Functional organization of primate visual cortex. In: Peters, A., Jones, E.G. (eds.) Cerebral Cortex, pp. 259–329. Plenum, New York (1985)

    Google Scholar 

  19. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)

    Google Scholar 

  20. Kustov, A.A., Robinson, D.L.: Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996)

    Article  Google Scholar 

  21. Klein, R.M.: Inhibition of return. Trends in Cognitive Sciences 4, 138–147 (2000)

    Article  Google Scholar 

  22. Noton, D., Stark, L.: Scanpaths in eye movements during pattern recognition. Science 171, 72–75 (1971)

    Article  Google Scholar 

  23. Posner, M.I., Presti, D.E.: Selective attention and cognitive control. Trends in Neuroscience 10, 13–17 (1987)

    Article  Google Scholar 

  24. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P., Shulman, G.L.: Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience 3, 292–297 (2000)

    Article  Google Scholar 

  25. Hopfinger, J.B., Buonocore, M.H., Mangun, G.R.: The neural mechanisms of top-down attentional control. Nature Neuroscience 3, 284–291 (2000)

    Article  Google Scholar 

  26. Motter, B.C.: Attention in the Animal Brain. In: MIT Encyclopedia of Cognitive Sciences, pp. 41–43 (2000)

    Google Scholar 

  27. Fadiga, L., Fogassi, L., Pavesi, G., Rizzolatti, G.: Motor facilitation during action observation: a magnetic stimulation study. Journal of Neurophysiology 73(6), 2608–2611 (1995)

    Google Scholar 

  28. Keysers, C., Kohler, E., Umiltà, M.A., Nanetti, L., Fogassi, L., Gallese, V.: Audiovisual mirror neurons and action recognition. Experimental Brain Research 153(4), 628–636 (2003)

    Article  Google Scholar 

  29. Longcamp, M., Anton, J.L., Roth, M., Velay, J.L.: Visual presentation of single letters activates a premotor area involved in writing. Neuroimage 19(4), 1492–1500 (2003)

    Article  Google Scholar 

  30. Exner, S.: Untersuchungen über die Lokalisation der Funktionen in der Großhirnrinde des Menschen. W. Braumüller, Wien (1881)

    Google Scholar 

  31. Longcamp, M., Zerbato-Poudou, M.T., Velay, J.L.: The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. Acta Psychologica 119(1), 67–79 (2005)

    Article  Google Scholar 

  32. Hulme, C.: The interaction of visual and motor memory for graphic forms following tracing. Quarterly Journal of Experimental Psychology 31(2), 249–261 (1979)

    Article  Google Scholar 

  33. Naka, M.: Repeated writing facilitates children’s memory for pseudocharacters and foreign letters. Memory and Cognition 26(4), 804–809 (1998)

    Article  Google Scholar 

  34. Fawcett, A.J., Nicolson, R.I., Dean, P.: Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia 46, 259–283 (1996)

    Article  Google Scholar 

  35. Nicolson, R.I., Fawcett, A.J., Berry, E.L., Jenkins, I.H., Dean, P., Brooks, D.J.: Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet 353(9165), 1662–1667 (1999)

    Article  Google Scholar 

  36. Velay, J.L., Daffaure, V., Giraud, K., Habib, M.: Interhemispheric sensorimotor integration in pointing movements: A study on dyslexic adults. Neuropsychologia 40(7), 827–834 (2002)

    Article  Google Scholar 

  37. Tanji, J., Shima, K.: Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994)

    Article  Google Scholar 

  38. Shima, K., Mushiake, H., Saito, N., Tanji, J.: Role for cells in the presupplementary motor area in updating motor plans. Proc. Natl. Acad. Sci. 93, 8694–8698 (1996)

    Article  Google Scholar 

  39. Catalan, M.J., Honda, M., Weeks, R.A., Cohen, L.G., Hallett, M.: The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121(2), 253–264 (1998)

    Article  Google Scholar 

  40. Shima, K., Tanji, J.: Neuronal Activity in the Supplementary and Presupplementary Motor Areas for Temporal Organization of Multiple Movements. Journal of Neurophysiology 84(4), 2148–2160 (2000)

    Google Scholar 

  41. Hikosaka, O., Sakai, K., Miyauchi, S., Takino, R., Sasaki, Y., Putz, B.: Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. Journal of Neurophysiology 76(1), 617–621 (1996)

    Google Scholar 

  42. Lopes, M., Santos-Victor, J.: Visual learning by imitation with motor representations. IEEE Transactions on Systems, Man and Cybernetics, Part B 35(3), 438–449 (2005)

    Article  Google Scholar 

  43. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  44. Rastegar, F., Ahmadabadi, M.N.: Extraction of temporally extended concepts for robot navigation. Technical Report, Dept. of ECE, University of Tehran (2006)

    Google Scholar 

  45. Reichle, E.D., Laurent, P.A.: Using Reinforcement to understand the emergence of “Intelligent” eye-movement behavior during reading. Psychological Review 113(2), 390–408 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fatemi Shariatpanahi, H., Nili Ahmadabadi, M. (2007). Biologically Inspired Framework for Learning and Abstract Representation of Attention Control. In: Paletta, L., Rome, E. (eds) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. WAPCV 2007. Lecture Notes in Computer Science(), vol 4840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77343-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77343-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77342-9

  • Online ISBN: 978-3-540-77343-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics