
Towards a Unifying Theory for Choreography
Conformance and Contract Compliance?

Mario Bravetti Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy

Abstract. In the context of Service Oriented Computing, contracts are
descriptions of the externally observable behaviour of services. Given
a group of collaborating services, their contracts can be used to verify
whether their composition is sound, i.e., the services are compliant. In
this paper, we relate the theory of contracts with the notion of chore-
ography conformance, used to check whether an aggregation of services
correctly behaves according to a high level specification of their possi-
ble conversations. The main result of this paper is the definition of an
effective procedure that can be used to verify whether a service with a
given contract can correctly play a specific role within a choreography.
This procedure is achieved via composition of choreography projection
and contract refinement.

1 Introduction

Service Oriented Computing (SOC) is a novel paradigm for distributed comput-
ing based on services intended as autonomous and heterogeneous components
that can be published and discovered via standard interface languages and pub-
lish/discovery protocols. One of the peculiarities of Service Oriented Computing,
distinguishing it from other distributed computing paradigms (such as compo-
nent based software engineering), is that it is centered around the so-called mes-
sage oriented architecture. This means that, given a set of collaborating services,
the current state of their interaction is stored inside the exchanged messages
and not only within the services. From a practical viewpoint, this means that
it is necessary to include, in the exchanged messages, the so-called correlation
information that permits to a service to associate a received message to the cor-
rect session of interaction (in fact, the same service could be contemporaneously
involved in different sessions at the same time).

Web Services is the most prominent service oriented technology: Web Services
publish their interface expressed in WSDL, they are discovered through the
UDDI protocol, and they are invoked using SOAP.

Two main approaches for the composition of services are currently under
investigation and development inside the SOC research community: service or-
chestration and service choreography. According to the first approach, the activi-
ties of the composed services are coordinated by a specific component, called the
? Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

orchestrator, that is responsible for invoking the composed services and collect
their responses. Several languages have been already proposed for programming
orchestrators such as XLANG [Tha01], WSFL [Ley01] and WS-BPEL [OAS].

Choreography languages are attracting a lot of attention within W3C, where
the most credited choreography language WS-CDL [W3C] is currently under de-
velopment. Choreographies represent a “more democratic” alternative approach
for service composition with respect to orchestrations. Indeed, orchestrations
require the implementation of central points of coordination; on the contrary,
choreography languages support a high level description of peer-to-peer interac-
tions among services that directly communicate without the mediation of any
orchestrator. Unfortunately, choreography languages are not yet popular due
to the difficulties encountered while translating the high level description of the
composed services into an actual system obtained as combination of autonomous,
loosely coupled and heterogeneous components.

As an example of service composition, let us consider a travel agency service
that can be invoked by a client in order to reserve both an airplane seat and a
hotel room. In order to satisfy the client’s request, the travel agency contacts
two separate services, one for the airplane reservation and one for the hotel
reservation. A choreographic specification of this service composition describes
the possible flows of invocations exchanged among the four roles (the client,
the travel agency, the airplane reservation service, and the hotel reservation
service). A formal specification of a choreography of this kind can be found in
the Example 1.

The problem that we consider in this paper can be summarized as follows:
given a choreography, we want to define an automatic procedure that can be
used to check whether a service correctly plays one of the roles described by
the choreography. For instance, given a choreographic specification of the above
travel agency example, and an actual travel agency service, we want to check
whether the actual service behaves correctly according to the choreographic spec-
ification. The solution that we propose to this problem assumes that the services
expose in their interface an abstract description of their behaviour. In the ser-
vice oriented computing literature, this kind of information is referred to as the
service contract [CL06]. More precisely, the service contract describes the se-
quence of input/output operations that the service intends to execute within a
session of interaction with other services. In particular, we propose to combine
choreography projection with service contract refinement. The former permits
to extract the expected behaviour of one role and synthesize a corresponding
service contract. The latter permits to characterize an entire class of contracts
(that refine the contract obtained by projection), for which it is guaranteed that
the corresponding services correctly play the considered role in the choreography.

An important property of our theory is that contract refinement is defined
locally, i.e., given a correct implementation of a choreography based on the con-
tracts C1, · · · , Cn, each contract Ci can be replaced by any refinement C ′

i, and the
overall system obtained by composition of C ′

1, · · · , C ′
n is still a correct implemen-

tation. This property permits to retrieve the actual services to be composed to

implement the choreography independently one from the other (e.g. contempo-
raneously querying different service registries) collecting the services that either
expose the contract obtained by projection, or one of its refined contracts.

The paper is structured as follows. In Section 2 we introduce our model for
choreographies defined in terms of a process calculus. In Section 3 we report
the theory of service contracts and refinement. This section is essentially an
extension of our previous work [BZ06a]; the main novelty is that in the contract
calculus we associate to contracts also an additional information indicating the
location where the corresponding service is located. The presence of locations
permits to prove new interesting results that did not hold in the theory reported
in [BZ06a] (for this reason we need to completely revisit and extend the results
already proved in [BZ06a]). Section 4 describes the exploitation of the theory of
contract refinement in the context of choreography-based service composition.
Finally, Section 5 reports some conclusive remarks and the comparison with the
related literature.

2 The Choreography Calculus

Definition 1. (Choreographies) Let Operations, ranged over by a, b, c, · · ·
and Roles, ranged over by r, s, t, · · ·, be two countable sets of operation and
role names, respectively. The set of Choreographies, ranged over by H,L, · · ·
is defined by the following grammar:

H ::= ar→s | H + H | H;H | H|H | H∗

The invocations ar→s means that role r invokes the operation a provided by
the role s. The other operators are choice + , sequential ; , parallel | , and
repetition ∗.

The operational semantics of choreographies considers two auxiliary terms
1 and 0. They are used to model the completion of a choreography, which
is relevant in the operational modeling of sequential composition. The formal
definition is given in Table 1 where we take η to range over the set of labels
{ar→s | a ∈ Operations, r, s ∈ Roles} ∪ {

√
} (the label

√
denotes completion).

The rules in Table 1 are rather standard for process calculi with sequential com-
position and without synchronization; in fact, parallel composition simply allows
for the interleaving of the actions executed by the operands.

Choreographies are especially useful to describe the protocols of interactions
within a group of collaborating services. To clarify this point, we present a simple
example of a protocol described with our choreography calculus.

Example 1. (Reservation via Travel Agency) Let us consider the following
choreography composed of four roles: Client, TravelAgency, AirCompany and
Hotel
ReservationClient→TravelAgency;
((ReserveTravelAgency→AirCompany;ConfirmFlightAirCompany→TravelAgency) |

(ReserveTravelAgency→Hotel;ConfirmRoomHotel→TravelAgency));
ConfirmationTravelAgency→Client + CancellationTravelAgency→Client

ar→s
ar→s−→ 1 1

√
−→ 0 H∗

√
−→ 0

H
η−→ H ′

H+L
η−→ H ′

H
η−→ H ′ η 6=

√

H;L
η−→ H ′;L

H
√
−→ H ′ L

η−→ L′

H;L
η−→ L′

H
√
−→ H ′ L

√
−→ L′

H|L
√
−→ H ′|L′

H
η−→ H ′ η 6=

√

H|L η−→ H ′|L

H
η−→ H ′ η 6=

√

H∗ η−→ H ′; H∗

Table 1. Semantic rules for contracts (symmetric rules omitted).

According to this choreography, the Client initially sends a reservation request
to a travel agency, that subsequently contacts in parallel an airplane company
AirCompany and a room reservation service Hotel in order to reserve both the
travel and the staying of the client. Then, the travel agency either confirms or
cancels the reservation request of the client.

Even if choreography languages represent a simple and intuitive approach for
the description of the message exchange among services, they are not yet very
popular in the context of service oriented computing. The main problem to their
diffusion is that it is not trivial to relate the high level choreography description
with the actual implementation of the specified system realised as composition
of services that are usually loosely coupled, independently developed by different
companies, and autonomous. More precisely, the difficult task is, given a chore-
ography, to lookup available services that, once combined, are ensured to behave
according to the given choreography.

In order to formally investigate this problem, we need also a calculus for the
description of the behaviour of services. This calculus is reported in the next
section; in Section 4 we will formalize a procedure to verify whether a given
service can play a specific role within a given choreography.

3 The Theory of Contracts with Locations

We assume a denumerable set of action names N , ranged over by a, b, c, The
set Ncon = {a∗ | a ∈ N} is the set of contract action names. Moreover, we
consider a denumerable set Loc of location names, ranged over by l, l′, l1, · · ·.
The set Nloc = {al | a ∈ N , l ∈ Loc} is the set of located action names. The set
Acon = Ncon ∪ {a∗ | a∗ ∈ Ncon} is the set of input and output contract actions.
The set Aloc = Nloc ∪ {al | al ∈ Nloc} is the set of input and output located
actions. We use τ /∈ N to denote an internal (unsynchronizable) computation.
Given a set of located action names I ⊂ Nloc, we denote: with I = {al | al ∈ I}
the set of output actions performable on those names and with Il = {a | al ∈ I}
the set of action names with associated location l.

Definition 2. (Contracts and Systems) The syntax of contracts is defined
by the following grammar

C ::= 0 | 1 | τ | a∗ | τ ; a∗ | a | τ ; al |

C;C | C+C | C|C | C\M | C∗

where M ⊆ Ncon. The set of all contracts C is denoted by Pcon. In the following
we will omit trailing “1” when writing contracts.
The syntax of systems (contract compositions) is defined by the following gram-
mar

P ::= [C]l | P ||P | P\\L

where L ⊆ Aloc. A system P is well-formed if: (i) every contract subterm [C]l
occurs in P at a different location l and (ii) no output action with destination
l is syntactically included inside a contract subterm occurring in P at the same
location l, i.e. actions al cannot occur inside a subterm [C]l of P . The set of all
well-formed systems P is denoted by P. In the following we will just consider
well-formed systems and, for simplicity, we will call them just systems.

We take α to range over the set of syntactical actions SAct = Acon∪N∪{al | al ∈
Nloc} ∪ {τ}.

The operational semantics of contracts is defined by the rules in Table 2
(plus symmetric rules). The operational semantics of systems is defined by the
rules in Table 3 plus symmetric rules. We take β to range over the set of actions
executable by contracts and systems, Act = Acon∪N ∪Aloc∪{τ}. We take λ to
range over the set of transition labels L = Act∪{

√
}, where

√
denotes successful

termination.

1
√
−→ 0 α

α−→ 1

C
λ−→ C′

C+D
λ−→ C′

C
λ−→ C′ λ 6=

√

C;D
λ−→ C′;D

C
√
−→ C′ D

λ−→ D′

C;D
λ−→ D′

C
a∗−→ C′ D

a∗−→ D′

C|D τ−→ C′|D′

C
√
−→ C′ D

√
−→ D′

C|D
√
−→ C′|D′

C
λ−→ C′ λ 6=

√

C|D λ−→ C′|D

C
λ−→ C′ λ 6∈ M ∪M

C\M λ−→ C′\M
C∗

√
−→ 0

C
λ−→ C′ λ 6=

√

C∗ λ−→ C′; C∗

Table 2. Semantic rules for contracts (symmetric rules omitted).

C
a−→ C′

[C]l
al−→ [C′]l

C
al′−→ C′

[C]l
al′−→ [C′]l

P
λ−→ P ′ λ 6=

√

P ||Q λ−→ P ′||Q

P
al−→ P ′ Q

al−→ Q′

P ||Q τ−→ P ′||Q′

P
√
−→ P ′ Q

√
−→ Q′

P ||Q
√
−→ P ′||Q′

P
λ−→ P ′ λ 6∈ L

P\\L λ−→ P ′\\L

Table 3. Semantic rules for contract compositions (symmetric rules omitted).

In the remainder of the paper we use the following notations: P
λ−→ to

mean that there exists P ′ such that P
λ−→ P ′ and, given a sequence of labels

w = λ1λ2 · · ·λn−1λn (possibly empty, i.e., w = ε), we use P
w−→ P ′ to denote

the sequence of transitions P
λ1−→ P1

λ2−→ · · · λn−1−→ Pn−1
λn−→ P ′ (in case of w = ε

we have P ′ = P , i.e., P
ε−→ P).

The main results reported in this paper are consequences of a property of
systems that we call output persistence. This property states that once a system
decides to execute an output whose location is not included in the system, its
actual execution is mandatory in order to successfully complete the execution of
the system. In order to formally prove this property we need to formalize two
(easy to prove) preliminary lemmata. Given a system P ∈ P, we use loc(P) to
denote the subset of Loc of the locations of contracts syntactically occurring
inside P : e.g. loc([C]l1 ||[C ′]l2) = {l1, l2}.

Proposition 1. (Output persistence) Let P ∈ P be a system such that

P
w−→ P ′ al−→, with l /∈ loc(P). We have that, for every P ′′ such that P ′ w′−→

P ′′ and P ′′
√
−→, the string w′ must include al.

Note that, when we apply external restriction on outputs al to a system P
such that l /∈ loc(P), i.e. we consider P\\O, with O ⊂ Nloc such that Ol = ∅
for every l ∈ loc(P), due to the absence of internal communication of actions
of O inside the system, we obtain a transition system isomorphic to that of the
system P{0/α|α ∈ O}, i.e. the syntactical substitution of 0 for every syntactical
occurrence of “α” such that α ∈ O. In the following we will use the abuse of
notation “C\\O” to stand for “C{0/α|α ∈ O}”: this allows us, e.g., to write a
term ([C1]l1 ||[C2]l2)\\O in the format considered above as [C1\\O]l1 ||[C2\\O]l2 . As
far as inputs are concerned, we cannot perform a similar symmetric syntactic
input action removal in the case of restriction on inputs al applied to a general
system P such that l ∈ loc(P). This because internal communication inside the
system could make use of the inputs that we are considering for removal. However
the property holds if we restrict to a system composed of a single contract. When
we apply external restriction on input directly to a contract C, i.e. we consider
[C]l\\I, with I = {al | a ∈ M} for some M ⊆ N , we obtain a transition system
isomorphic to that of [C{0/α|α ∈ M}]l. In the following we will use the abuse

of notation “C\\M” to stand for “C{0/α|α ∈ M}”: this allows us to write the
term above simply as [C\\M]l.

We now define the notion of correct composition of contracts. This notion is
the same as in [BZ06a]. Intuitively, a system composed of contracts is correct if
all possible computations may guarantee completion; this means that the system
is both deadlock and livelock free (there could be an infinite computation, but
given any possible prefix of this infinite computation, it can be extended to reach
a successfully completed computation).

Definition 3. (Correct contract composition) A system P is a correct con-
tract composition, denoted P ↓, if for every P ′ such that P

τ−→
∗

P ′ there exists

P ′′ such that P ′ τ−→
∗

P ′′
√
−→ .

3.1 Subcontract pre-order

We are now ready to define the notion of subcontract pre-order. Given a contract
C ∈ Pcon, we use oloc(C) to denote the subset of Loc of the locations of the
destinations of all the output actions occurring inside C.

Definition 4. (Subcontract pre-order) A pre-order ≤ over Pcon is a subcon-
tract pre-order if, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon and C ′

1, . . . , C
′
n ∈

Pcon such that ∀i. C ′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc

such that ∀i. li /∈ oloc(Ci) ∪ oloc(C ′
i), we have

([C1]l1 || . . . || [Cn]ln)↓ ⇒ ([C ′
1]l1 || . . . || [C ′

n]ln)↓

We will prove that there exists a maximal subcontract pre-order family; this is
a direct consequence of the output persistence property. In fact, if we consider
mixed choice it is easy to prove that there exists no maximal subcontract pre-
order family (see [BZ06a]).

We will show that the maximal subcontract pre-order family can be achieved
defining a more coarse form of refinement in which, given any system composed
of a set of contracts, refinement is applied to one contract only (thus leaving the
other unchanged). We call this form of refinement singular subcontract pre-order.

Intuitively a pre-order ≤ over Pcon is a singular subcontract pre-order when-
ever the correctness of systems is preserved by refining just one of the contracts.
More precisely, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon, 1 ≤ i ≤ n,C ′

i ∈ Pcon

such that C ′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc such that

∀k 6= i. lk /∈ oloc(Ck) and li /∈ oloc(Ci) ∪ oloc(C ′
i), we require

([C1]l1 || . . . || [Ci]li || . . . || [Cn]ln)↓ ⇒ ([C1]l1 || . . . || [C ′
i]li || . . . || [Cn]ln)↓

By exploiting commutativity and associativity of parallel composition we can
group the contracts which are not being refined and get the following cleaner
definition. We let Pconpar denote the set of systems of the form [C1]l1 || . . . ||[Cn]ln ,
with Ci ∈ Pcon, for all i ∈ {1, . . . , n}.

Definition 5. (Singular subcontract pre-order) A pre-order ≤ over Pcon

is a singular subcontract pre-order if, for any C,C ′ ∈ Pcon such that C ′ ≤ C,
l ∈ Loc such that l /∈ oloc(Ci) ∪ oloc(C ′

i), P ∈ Pconpar such that l /∈ loc(P) we
have ([C]l||P)↓ implies ([C ′]l||P)↓

We let Pconpres denote the set of systems of the form ([C1]l1 || . . . ||[Cn]ln)\\L,
with Ci ∈ Pcon for all i ∈ {1, . . . , n} and L ⊆ Aloc.

Proposition 2. Let ≤ be a singular subcontract pre-order. For any C,C ′ ∈ Pcon

such that C ′ ≤ C, l ∈ Loc such that l /∈ oloc(Ci) ∪ oloc(C ′
i), P ∈ Pconpres such

that l /∈ loc(P) we have ([C]l||P)↓ implies ([C ′]l||P)↓

Proof. Supposed P = ([C1]l1 || . . . ||[Cn]ln)\\L, let I,O ⊂ Nloc be such that I =
{ali | ali ∈ L ∧ 1 ≤ i ≤ n} and O = {al | al ∈ L} (in O only outputs on
the location l in the hypothesis of the proposition are cosidered). We have that
([C]l||(P\\L)) ↓ ⇐⇒ ([C]l||(P\\I ∪ O)) ↓ ⇐⇒ ([C]l||(P{0/α|α ∈ O}\\I)) ↓ ⇐⇒
([C]l||P ′)↓, where P ′ is obtained from P ′′ ≡ P{0/α|α ∈ O} as follows. We call
M ∈ N the (finite) set of action names occurring in C and C ′. We consider
an arbitrary injective function rel : M → N −M that maps each action name
a in M into a fresh name rel(a). For each al′ ∈ I, we do the following: (i) we
replace each syntactical occurrence of a inside the unique subterm [C ′′]l′ of P ′′

with rel(a), and (ii) we replace each syntactical occurrence of al′ inside P ′′ with
rel(a)l′ . Since the same chain of “ ⇐⇒ ” holds for C ′ (using the same relabeling
function “rel”), we have that the result is a direct consequence of the definition
of singular subcontract pre-order applied to P ′.

In order to prove the existence of the maximal subcontract pre-order, we
will prove that every pre-order that is a subcontract is also a singular subcon-
tract (Theorem 1). Moreover we will show that there exists a maximal singular
subcontract and we prove that it also a subcontract (Theorem 2).

Theorem 1. If a pre-order ≤ is a subcontract pre-order then it is also a singular
subcontract pre-order.

Proof. Suppose that ≤ is a subcontract pre-order. Consider n ≥ 1, C,C ′ ∈ Pcon,
l ∈ Loc and P ∈ Pconpar such that l /∈ loc(P). From ([C]l||P)↓ and C ′ ≤ C, we
can derive ([C ′]l||P) ↓ by just taking in the definition of subcontract pre-order,
C1 = C, C ′

1 = C ′, C2 . . . Cn to be such that P = (C2|| . . . ||Cn) and finally C ′
i to

be Ci for every i ≥ 2 (since ≤ is a pre-order we have C ≤ C for every C).

From the simple structure of their definition we can easily deduce that sin-
gular subcontract pre-order families have maximum, i.e. there exists a singular
subcontract pre-order includes all the other singular subcontract pre-orders.

Definition 6. (Subcontract relation) A contract C ′ is a subcontract of a
contract C denoted C ′ � C, if and only if for all l ∈ Loc such that l /∈
oloc(Ci) ∪ oloc(C ′

i) and P ∈ Pconpar such that l /∈ loc(P) we have ([C]l||P) ↓
implies ([C ′]l||P)↓

It is trivial to verify that the pre-order � is a singular subcontract pre-order
and is the maximum of all the singular subcontract pre-orders.

Moreover the subcontract relation is also a subcontract pre-order.

Theorem 2. The pre-order � is a subcontract pre-order.

Proof. Consider n ≥ 1, contracts C1, . . . , Cn ∈ Pcon and C ′
1, . . . , C

′
n ∈ Pcon

such that ∀i. C ′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc such

that ∀i. li /∈ oloc(Ci) ∪ oloc(C ′
i). For any i we let Pi = [Ci]li and P ′

i = [C ′
i]li . If

(P1|| . . . ||Pn)↓ we can derive (P ′
1|| . . . ||P ′

n)↓ in n steps: at the i-th step we replace
Pi with P ′

i without altering the correctness of the system thanks to the property
stated by the definition of subcontract relation �.

This last Theorem proves that the maximal singular subcontract pre-order is
also a subcontract pre-order; since we proved that every subcontract pre-order
is also a singular subcontract pre-order (see Theorem 1), we can conclude that
there exists a maximal subcontract pre-order and it corresponds to “�”.

3.2 Input-Output Subcontract relation

Definition 7. (Input and Output sets) Given the contract C ∈ Pcon, we
define I(C) (resp. O(C)) as the subset of N (resp. Nloc) of the potential input
(resp. output) actions of C. Formally, we define I(C) as follows (O(C) is defined
similarly):

I(0)= I(1)= I(τ)= I(a∗)= I(τ ; a∗)= I(τ ; aloc)= ∅ I(a) = {a}
I(C;C ′) = I(C+C ′) = I(C|C ′) = I(C)∪I(C ′) I(C\M) = I(C∗) = I(C)

Note that the set M in C \ M does not influence I(C \ M) because it contains
only local names outside N . Given the system P , we define I(P) (resp. O(P))
as the subset of Nloc of the potential input (resp. output) actions of P . Formally,
we define I(P) as follows (O(P) is defined similarly):

I([C]l) = {al | a ∈ I(C)} I(P ||P ′) = I(P) ∪ I(P ′) I(P\\L) = I(P)− L

Note that, given P = (C1|| . . . ||Cn)\\I ∪ O ∈ Pconpres, we have I(P) =
(
⋃

1≤i≤n I([Ci]li)) − I and O(P) = (
⋃

1≤i≤n O([Ci]li)) − O. In the following
we let Pconpres,I,O, with I,O ⊆ Nloc, denote the subset of systems of Pconpres

such that I(P) ⊆ I and O(P) ⊆ O.

Definition 8. (Input-Output Subcontract relation) A contract C ′ is a
subcontract of a contract C with respect to a set of input located names I ⊆ Nloc

and output located names O ⊆ Nloc, denoted C ′ �I,O C, if and only if for
all l ∈ Loc such that l /∈ oloc(Ci) ∪ oloc(C ′

i) and P ∈ Pconpres,I,O such that
l /∈ loc(P) we have ([C]l||P)↓ implies ([C ′]l||P)↓

Due to Proposition 2, we have �=�Nloc,Nloc
. The following Proposition states

an intuitive contravariant property: given �I′,O′ , and the greater sets I and O
(i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a smaller pre-order �I,O (i.e. �I,O⊆�I′,O′).
This follows from the fact that extending the sets of input and output actions
means considering a greater set of discriminating contexts.

Proposition 3. Let C,C ′ ∈ Pcon be two contracts, I, I ′ ⊆ Nloc be two sets of
input channel names such that I ′ ⊆ I and O,O′ ⊆ Nloc be two sets of output
channel names such that O′ ⊆ O. We have:

C ′ �I,O C ⇒ C ′ �I′,O′ C

The following Proposition states that a subcontract is still a subcontract even
if we restrict its actions in order to consider only the inputs and outputs already
available in the supercontract.

Proposition 4. Let C,C ′ ∈ Pcon be contracts and I,O ⊆ Nloc be sets of located
names. We have

C ′ �I,O C ⇒ C ′\\(I(C ′)− I(C)) �I,O C

C ′ �I,O C ⇒ C ′\\(O(C ′)−O(C)) �I,O C

Proof. We discuss the result concerned with restriction of outputs (the proof
for the restriction of inputs is symmetrical). Let C ′ �I,O C. Given any P ∈
Pconpres,I,O such that ([C]l||P)↓, we will show that ([C ′\\(O(C ′)−O(C))]l || P)↓.
We first observe that ([C]l || P\\(O(C ′)− O(C)))↓. Since C ′ �I,O C, we derive
([C ′]l || P\\(O(C ′)−O(C)))↓.
As a consequence ([C ′\\(O(C ′)−O(C))]l || P\\(O(C ′) − O(C))) ↓. We can con-
clude ([C ′\\(O(C ′)−O(C))]l || P)↓.

All the results discussed so far do not depend on the output persistence
property. The first relevant result depending on this peculiarity is reported in
the following Proposition. It states that if we substitute a contract with one of
its subcontract, the latter cannot activate outputs that were not included in the
potential outputs of the supercontract.

Proposition 5. Let C,C ′ ∈ Pcon be contracts and I,O ⊆ Nloc be sets of located
names and let C ′ �I,O C. For every l ∈ Loc, l /∈ oloc(Ci) ∪ oloc(C ′

i), and
P ∈ Pconpres,I,O, l /∈ loc(P), such that ([C]l||P)↓,

([C ′]l||P) τ−→
∗

([C ′
der]l||Pder) ⇒

{
∀ al′ ∈ O(C ′)−O(C). C ′

der

al′−→/
∀ a ∈ I(C ′)− I(C). Pder

al−→/

Proof. We proceed by contradiction for both statements.
Concerning the first statement. Suppose that there exist C ′

der, Pder such that

([C ′]l||P) τ−→
∗

([C ′
der]l||Pder) and C ′

der

al′−→ for some al′ ∈ O(C ′) − O(C). We
further suppose (without loss of generality) that such a path is minimal, i.e.

no intermediate state (C ′
der2||Pder2) is traversed, such that C ′

der2

al′−→ for some
al′ ∈ O(C ′) − O(C). This implies that the same path must be performable by
([C ′]l\\(O(C ′)−O(C)) || P), thus reaching the state
([C ′

der]l\\(O(C ′)−O(C)) || Pder). However, since in the state C ′
der of contract

C ′ we have C ′
der

al′−→ for some al′ ∈ O(C ′) − O(C) and the execution of al′

is disallowed by restriction, due to output persistence, the contract will never
be able to reach success (no matter what contracts in P will do). Therefore
([C ′]l\\(O(C ′)−O(C)) || P) 6↓ and (due to Proposition 4) we reached a con-
tradiction.

Concerning the second statement. Suppose that there exist C ′
der, Pder such

that ([C ′]l||P) τ−→
∗

([C ′
der]l||Pder) and Pder

al−→ for some a ∈ I(C ′) − I(C).
We further suppose (without loss of generality) that such a path is minimal,
i.e. no intermediate state (C ′

der2||Pder2) is traversed, such that Pder2
al−→ for

some a ∈ I(C ′)− I(C). This implies that the same path must be performable by
([C ′]l || P\\(I([C ′]l)− I([C]l))), thus reaching the state
([C ′

der]l || Pder\\(I([C ′]l)− I([C]l))). However, since in the state Pder of system

P we have Pder
al−→ for some a ∈ I(C ′)− I(C) and the execution of al is disal-

lowed by restriction, due to output persistence, the system will never be able to
reach success (no matter what contract C will do).
Therefore ([C ′]l || P\\(I([C ′]l)− I([C]l))) 6↓. This implies ([C ′\\I(C ′)−I(C)]l || P) 6↓
and (due to Proposition 4) we reached a contradiction.

The following Propositions permit to conclude that the set of potential inputs
and outputs of the other contracts in the system is an information that does not
influence the subcontract relation.

Proposition 6. Let C ∈ Pcon be contracts, O ⊆ Nloc be a set of located output
names and I, I ′ ⊆ Nloc be two sets of located input names such that O(C) ⊆ I, I ′.
We have that for every contract C ′ ∈ Pcon,

C ′ �I,O C ⇐⇒ C ′ �I′,O C

Proof. Let us suppose C ′ �I′,O C (the other direction is symmetric). Given any
l ∈ Loc, l /∈ oloc(Ci) ∪ oloc(C ′

i), and P ∈ Pconpres,I,O,l /∈ loc(P), such that
([C]l||P) ↓, we will show that ([C ′]l||P) ↓. We first observe that ([C]l || P\\(I −
O(C)))↓. Since C ′ �I′,O C and O(C) ⊆ I ′, we derive ([C ′]l || P\\(I −O(C)))↓.
Due to Proposition 5 we have that ([C ′]l||P\\(I − O(C))) can never reach by
τ transitions a state where outputs in O(C ′) − O(C) are executable by some
derivative of C ′, so we conclude ([C ′]l||P)↓.
Proposition 7. Let C ∈ Pcon be contracts, O,O′ ⊆ Nloc be two sets of located
output names such that for every l ∈ Loc we have I(C) ⊆ Ol, O

′
l, and I ⊆ Nloc

be a set of located input names. We have that for every contract C ′ ∈ Pcon,

C ′ �I,O C ⇐⇒ C ′ �I,O′ C

Proof. Let us suppose C ′ �I,O′ C (the other direction is symmetric). Given any
l ∈ Loc, l /∈ oloc(Ci) ∪ oloc(C ′

i), and P ∈ Pconpres,I,O,l /∈ loc(P), such that
([C]l||P)↓, we show that ([C ′]l||P)↓. We observe that ([C]l || P\\(O − I([C]l)))↓.
Since C ′ �I,O′ C and I([C]l) ⊆ O′, we derive ([C ′]l || P\\(O − I([C]l)))↓. As a
consequence ([C ′\\I(C ′) − I(C)]l || P\\(O − I([C]l))) ↓ and finally ([C ′\\I(C ′) −
I(C)]l || P) ↓. Due to Proposition 5 we have that ([C ′\\I(C ′) − I(C)]l || P)
can never reach by τ transitions a state where outputs in I([C ′]l)− I([C]l) are
executable by some derivative of P , so we conclude ([C ′]l||P)↓.

3.3 Resorting to Should Testing

The remainder of this Section is devoted to the definition of an actual procedure
for determining that two contracts are in subcontract relation. This is achieved
resorting to the theory of should-testing [RV05].

First, we need a preliminary result that is a direct consequence of the fact
that C ′ �Nloc,

S
l∈Loc I([C]l) C if and only if C ′ � C.

Lemma 1. Let C,C ′ ∈ Pcon be contracts. We have

C ′\\(I(C ′)− I(C)) � C ⇒ C ′ � C

Proof. We will show that the hypothesis yields C ′ �Nloc,
S

l∈Loc I([C]l) C. From
this we can derive the result by using Proposition 7. Given any l ∈ Loc, l /∈
oloc(Ci) ∪ oloc(C ′

i), and P ∈ Pconpres,Nloc,
S

l∈Loc I([C]l),l /∈ loc(P), such that
([C]l||P)↓, we will show that ([C ′]l||P)↓. We have ([C ′\\I(C ′)−I(C)]l ||P)↓ ⇐⇒
([C ′\\I(C ′)− I(C)]l ||P\\I([C ′]l)−I([C]l)) ↓ ⇐⇒ ([C ′]l ||P\\I([C ′]l)−I([C]l)) ↓
⇐⇒ ([C ′]l||P)↓.

Note that the opposite implication trivially holds (by taking O = Nloc and
I = Nloc in Proposition 4).

In the following we denote with �test the should-testing pre-order defined
in [RV05] where we consider the set of actions used by terms as being L ∪ {a |
a ∈ N} (i.e. we consider located and unlocated input and output actions and

√

is included in the set of actions of terms under testing as any other action). We
denote here with

√′ the special action for the success of the test (denoted by
√

in [RV05]). In the following we consider λ to range over L ∪ {a | a ∈ N}.
In order to resort to the theory defined in [RV05], we define a normal form

for contracts of our calculus that corresponds to terms of the language in [RV05].
The normal form of the system P (denoted with NF(P)) is defined as follows,
by using the operator recXθ (defined in [RV05]) that represents the value of X
in the solution of the minimum fixpoint of the finite set of equations θ,

NF(P) = recX1θ where θ is the set of equations
Xi =

∑
j λi,j ;Xder(i,j)

where, assuming to enumerate the states in the labeled transition system of P
starting from X1, each variable Xi corresponds to the i-th state of the labeled
transition system of P , λi,j is the label of the j-th outgoing transition from Xi,
and der(i, j) is the index of the state reached with the j-th outgoing transition
from Xi. We assume empty sums to be equal to 0, i.e. if there are no outgoing
transitions from Xi, we have Xi = 0.

Theorem 3. Let C,C ′ ∈ Pcon be two contracts. We have

NF(C ′\\I(C ′)−I(C)) �test NF(C) ⇒ C ′ � C

Proof. According to the definition of should-testing of [RV05], since

NF(C ′\\(I(C ′)−I(C))) �test NF(C)

we have that, for every test t, if NF(C) shd t, then also NF(C ′\\(I(C ′)−I(C)))
shd t, where Q shd t iff

∀w ∈ L∗, Q′. Q||Lt
w−→ Q′ ⇒ ∃v ∈ L∗, Q′′ : Q′ v−→ Q′′

√′
−→

where ||L is the CSP parallel operator: in R||LR′ transitions of R and R′ with the
same label λ (with λ 6= τ,

√′) are required to synchronize and yield a transition
with label λ.

Let us now consider l ∈ Loc, l /∈ oloc(Ci) ∪ oloc(C ′
i), and P ∈ Pconpar,

l /∈ loc(P), such that ([C]l||P)↓. We consider t = NF(P){
√

/
√

;
√′}{a/al|a ∈

N}, i.e., the normal form of P where: we replace each occurrence of
√

with the
sequence

√
;
√′ and we turn every output action al directed to [C]l into a. We

denote with t the term obtained by turning each a(al) occurring in t into a (al),
and each a(al) into a(al). From the definition of shd it immediately follows that
NF(C) shd t. Since NF(C ′\\(I(C ′)−I(C))) �test NF(C), we have that also
NF(C ′\\(I(C ′)−I(C))) shd t. From the definition of shd we can conclude that
(C ′\\I(C ′)−I(C)||P)↓. The thesis directly follows from Lemma 1.

In [BZ06a] you can find counter examples that prove that the opposite impli-
cation C ′ � C ⇒ NF(C ′\\I(C ′)−I(C)) �test NF(C) does not hold in general.

4 Contract-based Choreography Conformance

In this section we discuss how to exploit the choreography and the contract
calculus in order to define a procedure that checks whether a service exposing a
specific contract C can play the role r within a given choreography.

First of all we need to uniform the choreography and the contract calculus.
From a syntactical viewpoint, we have to map the operation names used for
choreographies with the names used for contracts assuming Operations = N .
We do the same also for the role names that are mapped into the location
names, i.e., Roles = Loc. From the point of view of the operational semantics,
we need to slightly modify the labels in the operational semantics of the contract
calculus in order to have labels comparable to those used in the choreography
calculus. To this aim we have to add the auxiliary set of labels {ar→s, ars | a ∈
Operations, r, s,∈ Roles} and replace the second and the fourth rules in Table 3
with the following ones:

C
as−→ C ′

[C]r
ars−→ [C ′]r

P
as−→ P ′ Q

ars−→ Q′

P ||Q ar→s−→ P ′||Q′

With P
τ∗−→ P ′ we denote the existence of a (possibly empty) sequence of τ -

labeled transitions starting from the system P and leading to P ′. Given the

sequence of labels w = λ1 · · ·λn, we write P
w=⇒ P ′ if there exist P1, · · · , Pm

such that P
τ∗−→ P1

λ1−→ P2
τ∗−→ · · · τ∗−→ Pm−1

λn−→ Pm
τ∗−→ P ′.

We are now ready to formalize the notion of correct implementation of a
choreography. Intuitively, a system implements a choreography if it is a correct
composition of contracts and all of its conversations (i.e. the possible sequences
of message exchanges), are admitted by the choreography.

Definition 9. (Choreography implementation) Given the choreography H
and the system P , we say that P implements H (written P ∝ H) if

– P is a correct contract composition and

– given a sequence w of labels of the kind ar→s, if P
w
√

=⇒ P ′ then there exists

H ′ such that H
w
√

−→ H ′.

Note that it is not necessary for an implementation to include all possible
conversations admitted by a choreography.

Example 2. (Implementation of the Travel Agency Choreography) As
an example, we present a possible implementation of the choreography reported
in the Example 1.

[τ ;ReservationTravelAgency;Confirmation]Client ||
[Reservation; (τ ;ReserveAirCompany;ConfirmFlight |

τ ;HotelAirCompany;ConfirmRoom);
τ ;ConfirmationClient]TravelAgency ||

[Reserve; τ ;ConfirmFlightTravelAgency]AirCompany ||
[Reserve; τ ;ConfirmRoomTravelAgency]Hotel

Note that in this implementation we assume that the travel agency always replies
positively to the request of the client sending the Confirmation message.

We are now in place for the definition of the (family of) relations C /H r
indicating whether the contract C can play the role r in the choreography H.

Definition 10. (Conformance family) Let /H to denote relations between
contracts and roles parameterized on the choreography H defined on the roles
r1, · · · , rn. A family of relations {/H | H ∈ Choreographies} is a conformance
family if we have that if C1 /H r1, · · · , Cn /H rn then [C1]r1 || · · · ||[Cn]rn

∝ H

It is interesting to observe that, differently from the subcontract pre-order
families defined on contracts in the previous Section, there exists no maximal
conformance family. For instance, consider the choreography H = ar→s|br→s.
We could have two different conformance families, the first one including /1

H

such that
(τ ; as|τ ; bs) /1

H r (τ ; a; b + τ ; b; a) /1
H s

and the second one including /2
H such that

(τ ; as; τ ; bs + τ ; bs; τ ; as) /2
H r (a|b) /2

H s

It is easy to see that it is not possible to have a conformance family that comprises
the union of the two relations /1

H and /2
H . In fact, the system

[τ ; as; τ ; bs + τ ; bs; τ ; as]r || [τ ; a; b + τ ; b; a]s

is not a correct composition because the two contracts may internally select two
incompatible orderings for the execution of the two message exchanges (and in
this case they stuck).

The remainder of the paper is dedicated to the definition of a mechanism
that, exploiting the notion of contract refinement defined in the previous section,
permits to effectively characterize an interesting conformance family. The first
step of this mechanism requires the definition of the projection of a choreography
on a specific role.

Definition 11. (Choreography projection) Given a choreography H, the
projection H on the role r, denoted with [[H]]r, is defined inductively on the
syntax of H in such a way that

[[ar→s]]t =

 τ ; as if t = r
a if t = s
1 otherwise

and that it is a homomorphism with respect to all operators.

It is interesting to observe that given a choreography H, the system ob-
tained composing its projections is not ensured to be an implementation of H.
For instance, consider the choreography ar→s ; bt→u. The system obtained by
projection is [as]r || [a]s || [bu]t || [b]u. Even if this is a correct composition of con-
tracts, it is not an implementation of H because it comprises the conversation
bt→uar→s which is not admitted by H.

The problem is not in the definition of the projection, but in the fact that the
above choreography cannot be implemented preserving the message exchanges
specified by the choreography. In fact, in order to guarantee that the communi-
cation between t and u is executed after the communication between r and s, it
is necessary to add a further message exchange (for instance between s and r)
which is not considered in the choreography. This problem has been already in-
vestigated in [CHY07] where a notion of well formed choreography is introduced,
and it is proved that well formed choreographies admit a correct projection.1

Nevertheless, the notion of well formed choreography in [CHY07] is rather
restrictive. In particular, after the execution of a message sent from the role v
to the role z, the subsequent message in the conversation should be mandatorily
emitted by z. For instance, the choreography ar→s; br→s does not satisfy this
constraint even if the system [τ ; as; τ ; bs]r || [a; b]s obtained by projection is a
correct implementation.

1 The projection defined in [CHY07] is more complex than ours as their choreography
calculus comprises also an explicit notion of session.

To be less restrictive than [CHY07], we consider as well formed all those
choreographies for which the system obtained by projection is ensured to be a
correct implementation.

Definition 12. (Well formed choreography) A choreography H, defined on
the roles r1, · · · , rn, is well formed if [[[H]]r1]r1 || · · · || [[[H]]rn]rn ∝ H

It is worthwhile to note that well formedness is decidable. In fact, given a chore-
ography H, it is sufficient to take the corresponding system P obtained by projec-
tion, then consider P and H as finite state automata, and finally check whether
the language of the first automaton is included in the language of the second
one. Note that the terms P and H can be seen as finite state automata thanks to
the fact that their infinite behaviours are defined using Kleene-star repetitions
instead of general recursion.

Now, we define the notion of consonance between contracts and roles of a
given choreography, and we prove that it is a conformance family.

Definition 13. (Consonance) We say that the contract C is consonant with
the role r of the well formed choreography H (written C ./H r) if

NF
(
Cr\\I([[H]]r)− I(C)

)
�test NF

(
[[H]]r

)
where \\, defined in Section 3, is the restriction operator that acts independently
on input and output actions; I(), defined in Section 3.2, is the function that
extracts from a contract the names used as inputs; NF(), defined in Section
3.3, is the function that returns the normal form of a contract; and �test, defined
in Section 3.3, is the should-testing pre-order.

Theorem 4. The family {./H | H is a well formed choreography} of conso-
nance relations is a conformance family.

Proof. Suppose that H is a well formed choreography defined on the roles r1, · · · , rn.
Given C1 , · · · , Cn such that C1 ./H r1, · · · , Cn ./H rn, we have to prove that

1. [C1]r1 || · · · || [Cn]rn
is a correct composition of contracts and

2. given a sequence w of labels of the kind ar→s, if [C1]r1 || · · · || [Cn]rn

w
√

=⇒ P ′

then also H
w
√

−→ H ′.

We first consider item 1. As H is a well formed choreography we have that (by
Definitions 12 and 9) [[[H]]r1]r1 || · · · || [[[H]]rn]rn is a correct composition of
contracts. By definition of ./H it follows that

NF
(
Ci\\(I([[H]]ri)− I(Ci))

)
�test NF

(
[[H]]ri

)
for i ∈ 1 · · ·n. By Theorem 3 we have that Cri

� [[H]]ri
and by Theorem 2 it

follows that [C1]r1 || · · · || [Cn]rn
is a correct composition of services.

In order to prove that also item 2. holds, we start observing that the should
testing pre-order is preserved by parallel composition operator [RV05]. Never-
theless, in [RV05] a different parallel operator in the CSP-style is considered:

P ||AQ (where A is a set of actions) P and Q synchronize on equal actions (and
not complementary actions), and only on the actions appearing in the set A.
This kind of parallel composition operator is not associative; as it is more conve-
nient for our purposes, we assume right associativity, i.e. P ||AQ||BR stands for
P ||A(Q||BR).

Due to preservation of parallel composition we have that

NF
(
Ci\\(I([[H]]ri)− I(Ci))

)
�test NF

(
[[H]]ri

)
implies that also

NF
(
C1\\(I([[H]]r1)− I(C1))

)
||A1

· · · ||An−1
NF

(
Cn\\(I([[H]]rn)− I(Cn))

)
�test

NF
(
[[H]]r1

)
||A1

· · · ||An−1
NF

(
[[H]]rn

)
for any A1 · · ·An. Moreover, by applying the same reasoning reported in the proof
of Theorem 3, the restrictions on the additional inputs I([[H]]ri

)− I(Ci)) are not
relevant because the other partners do not emit actions on these operations. Thus
we have also that

NF
(
C1

)
||A1

· · · ||An−1
NF

(
Cn

)
�test NF

(
[[H]]r1

)
||A1

· · · ||An−1
NF

(
[[H]]rn

)
We now apply a transformation (that preserves should testing pre-order) on the
terms NF

(
Ci

)
and NF

(
[[H]]ri

)
and define Ai in such a way that we achieve

CSP terms that have the same sequences of exchanged messages of the corre-
sponding terms of our contract calculus. The first transformation, denoted with
csp(D)s1···sm

r , is applied to a contract D playing the role r, that interacts with
the other roles s1, · · · , sm, in order to transform input and output actions in the
corresponding actions of the kind ar→s:

csp(D)s1···sm
r = NF(D) {ar→si

/asi ,
∑

t∈s1···sm

at→r/a | a ∈ Operations}

We have that

P = NF
(
csp(C1)r2···rn

r1

)
||A1

· · · ||An−1
NF

(
csp(Cn)r1···rn−1

rn

)
�test

NF
(
csp([[H]]r1)

r2···rn
r1

)
||A1

· · · ||An−1
NF

(
csp([[H]]rn

)r1···rn−1
rn

)
= Q

We now define Ai in such a way that the sequences of actions of the kind ar→s of
P and Q correspond to those of [C1]r1 || · · · ||[Cn]rn

and [[[H]]r1]r1 || · · · ||[[[H]]rn
]rn

,
respectively. Consider, in fact Ai = {ari→rj

, arj→ri
| a ∈ Operations, i <

j ≤ n}. As H is well formed, then [[[H]]r1]r1 || · · · ||[[[H]]rn
]rn

is a correct im-
plementation thus its sequences of actions ar→s are included in those of H.
Item 2. simply follows from the fact that the should-testing pre-order implies
also trace inclusion, thus the traces of [C1]r1 || · · · ||[Cn]rn

are included in those of
[[[H]]r1]r1 || · · · ||[[[H]]rn

]rn
.

5 Related Work and Conclusion

We have addressed the problem of the deployment of service compositions via
choreography specifications in the context of service oriented computing. In par-
ticular, we have formalized service choreographies and service contracts via pro-
cess calculi and, exploiting the notion of choreography projection in combination
with service contract refinement, we have defined a new relation called conso-
nance. The consonance relation is parameterized on a given choreography H and
relates service contracts to roles: if a contract C is consonant to a role r, then
the services exposing contract C (or one of its refinements) correctly play role r
in the considered choreography H.

Choreography languages have been already investigated in a process algebraic
setting by Carbone et al. [CHY07] and by Busi et al. [BGG+05,BGG+06].

The paper [CHY07] is the first one, to the best out knowledge, in which the
problem of ill-formed choreographies is considered: a choreography is ill-formed
when it is not possible to achieve by projection a correct implementation that
preserves the message exchanges specified by the choreography. The solution to
this problem presented in [CHY07] is given by three basic principles that, when
satisfied by a choreography, ensure to achieve a corresponding correct projec-
tion. On the one hand, the calculi proposed in [CHY07] are more expressive
than the calculi we define in this paper because they comprise name passing and
an explicit notion of session. On the other hand, the basic principles imposed
in [CHY07] give rise to a more restrictive notion of well formed choreography
with respect to the one proposed in this paper (this technical aspect is discussed
in Section 4). In [BGG+05,BGG+06] a more general notion of conformance be-
tween a choreography and a corresponding implementation as a service system
is defined. According to this more general notion of conformance the implemen-
tation does not necessarily follow from projection, but additional services (not
included at the choreography level) can be added in order to synchronize the
correct scheduling of the the message flow.

The theory of contracts that we discuss in Section 3 is an extension of the
theory reported in our paper [BZ06a]. More precisely, Section 3 is a revisitation
of that theory in a slightly different context. The main novelty here is that we
associate a location to each contract, and we assume that output operations are
specified by indicating, besides the name of the invoked operation, also its actual
location. This difference has a very important consequence which is proved as an
original result in this paper: contract refinement is no longer influenced by the
set of output operations that can be executed by the other composed contracts.
More precisely, contract refinement was defined in [BZ06a] with an associated pa-
rameter (the set of output operations available in the other composed contracts)
while in the present paper we can define a new notion of contract refinement
independently of this information. The details of this new results are discussed
in Section 3.

The notion of contract refinement that we propose is achieved resorting to
the theory of testing. There are some relevant differences between our form of
testing and the traditional one proposed by De Nicola-Hennessy [DH84]. The

most relevant difference is that, besides requiring the success of the test, we
impose also that the tested process should successfully complete its execution.
This further requirement has important consequences; for instance, we do not
distinguish between the always unsuccessful process 0 and other processes, such
as a.1+a.b.1,2 for which there are no guarantees of successful completion in any
possible context. Another relevant difference is in the treatment of divergence:
we do not follow the traditional catastrophic approach, but the fair approach
introduced by the theory of should-testing of Rensink-Vogler [RV05]. In fact, we
do not impose that all computations must succeed, but that all computations
can always be extended in order to reach success.

Contracts have been investigated also by Fournet et al. [FHR+04] and by
Carpineti et al. [CCL+06]. In [FHR+04] contracts are CCS-like processes; a
generic process P is defined as compliant to a contract C if, for every tuple of
names ã and process Q, whenever (νã)(C|Q) is stuck-free then also (νã)(P |Q)
is. Our notion of contract refinement differs from stuck-free conformance mainly
because we consider a different notion of stuckness. In [FHR+04] a process state
is stuck (on a tuple of channel names ã) if it has no internal moves (but it
can execute at least one action on one of the channels in ã). In our approach,
an end-states different from successful termination is stuck (independently of
any tuple ã). Thus, we distinguish between internal deadlock and successful
completion while this is not the case in [FHR+04]. Another difference follows
from the exploitation of the restriction (νã); this is used in [FHR+04] to explicitly
indicate the local channels of communication used between the contract C and
the process Q. In our context we can make a stronger closed-world assumption
(corresponding to a restriction on all channel names) because service contracts
do not describe the entire behaviour of a service, but the flow of execution of its
operations inside one session of communication.

The closed-world assumption is considered also in [CCL+06] where, as in
our case, a service oriented scenario is considered. In particular, in [CCL+06]
a theory of contracts is defined for investigating the compatibility between one
client and one service. Our paper consider multi-party composition where several
services are composed in a peer-to-peer manner. Moreover, we impose service
substitutability as a mandatory property for our notion of refinement; this does
not hold in [CCL+06] where it is not in general possible to substitute a service
exposing one contract with another one exposing a subcontract. Another relevant
difference is that the contracts in [CCL+06] comprises also choices guarded by
both input and output actions.

References

[BZ06a] Mario Bravetti and Gianluigi Zavattaro. Contract based Multi-party Service
Composition. In FSEN’07, volume to appear of LNCS, 2007.

[BGG+05] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gian-
luigi Zavattaro. Choreography and orchestration: A synergic approach for
system design. In ICSOC’05, volume 3826 of LNCS, pages 228–240, 2005.

2 We use 0 to denote unsuccessful termination and 1 for successful completion.

[BGG+06] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gian-
luigi Zavattaro. Choreography and orchestration conformance for system
design. In Coordination’06, volume 4038 of LNCS, pages 63–81, 2006.

[CHY07] Marco Carbone, Kohei Honda, and Nabuko Yoshida. Structured
Communication-Centred Programming for Web Services. In ESOP’07, vol-
ume to appear of LNCS, 2007.

[CCL+06] Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca
Padovani. A Formal Account of Contracts for Web Services. In WS-FM’06,
volume 4184 of LNCS, pages 148-162, 2006.

[CL06] Samuele Carpineti and Cosimo Laneve A Basic Contract Language for Web
Services. In ESOP’06, volume 3924 of LNCS, pages 197–213, 2006.

[DH84] Rocco De Nicola and Matthew Hennessy, Testing Equivalences for Processes.
Theoretical Computer Science, volume 34: 83–133, 1984.

[FHR+04] Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof.
Stuck-Free Conformance. In CAV’04, volume 3114 of LNCS, pages 242–254,
2004.

[Ley01] F. Leymann. Web Services Flow Language (wsfl 1.0). Technical report, IBM
Software Group, 2001.

[RV05] Arend Rensink and Walter Vogler. Fair testing. CTIT Technical Report
TR-CTIT-05-64, Department of Computer Science, University of Twente,
December 2005.

[OAS] OASIS. Web Services Business Process Execution Language Version 2.0.
[Tha01] S. Thatte. XLANG: Web services for business process design. Microsoft

Corporation, 2001.
[W3C] W3C. Web Services Choreography Description Language.

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217.

