Abstract
We explore a connection between permutation polynomials of the form x r f(x (q − 1)/l) and cyclotomic mapping permutation polynomials over finite fields. As an application, we characterize a class of permutation binomials in terms of generalized Lucas sequences.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbary, A., Alaric, S., Wang, Q.: On some classes of permutation polynomials. Int. J. Number Theory (to appear)
Akbary, A., Wang, Q.: On some permutation polynomials. Int. J. Math. Math. Sci. 16, 2631–2640 (2005)
Akbary, A., Wang, Q.: A generalized Lucas sequence and permutation binomials. Proc. Amer. Math. Soc. 134(1), 15–22 (2006)
Akbary, A., Wang, Q.: On polynomials of the form x r f(x (q − 1)/l). Int. J. Math. Math. Sci. (to appear)
Bell, J., Wang, Q.: A note on Costas arrays and cyclotomic permutations. Ars Combin. (to appear)
Blackburn, S.R., Etzion, T., Paterson, K.G.: Permutation polynomials, de Bruijn sequences, and linear complexity. J. Combin. Theory Ser. A 76(1), 55–82 (1996)
Chu, W., Colbourn, C.J., Dukes, P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32(1-3), 51–64 (2004)
Chu, W., Golomb, S.W.: Circular Tuscan-k arrays from permutation binomials. J. Combin. Theory Ser. A 97(1), 195–202 (2002)
Cohen, S.D.: Permutation group theory and permutation polynomials. In: Algebras and combinatorics (Hong Kong, 1997), pp. 133–146. Springer, Singapore (1999)
Evans, A.B.: Cyclotomy and orthomorphisms: A survey. Congr. Numer. 101, 97–107 (1994)
Golomb, S.W., Moreno, O.: On periodicity properties of Costas arrays and a conjecture on permutation polynomials. IEEE Trans. Inform. Theory 42(6) part 2, 2252–2253 (1996)
Levine, J., Brawley, J.V.: Some cryptographic applications of permutation polynomials. Cryptologia 1, 76–92 (1977)
Levine, J., Chandler, R.: Some further cryptographic applications of permutation polynomials. Cryptologia 11, 211–218 (1987)
Lidl, R., Müller, W.B.: Permutation polynomials in RSA-cryptosystems. In: Adv. in Cryptology, Plenum, New York, pp. 293–301 (1984)
Lidl, R., Mullen, G.L.: When does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 95, 243–246 (1988)
Lidl, R., Mullen, G.L.: When does a polynomial over a finite field permute the elements of the field? II. Amer. Math. Monthly 100, 71–74 (1993)
Lidl, R., Mullen, G.L., Turnwald, G.: Dickson polynomials. In: Pitman Monographs and Surveys in Pure and Applied Math., Longman, London/Harlow/Essex (1993)
Lidl, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge (1997)
Mullen, G.L.: Permutation polynomials over finite fields. In: Finite Fields, Coding Theory, and Advances in Communications and Computing, pp. 131–151. Marcel Dekker, New York (1993)
Niederreiter, H., Winterhof, A.: Cyclotomic \(\mathcal{R}\)-orthomorphisms of finite fields. Discrete Math. 295, 161–171 (2005)
Rivest, R.L.: Permutation polynomials modulo 2w. Finite fields Appl. 7, 287–292 (2001)
Rivest, R.L., Robshaw, M.J.B., Sidney, R., Yin, Y.L.: The RC6 block cipher, Published electoronically at http://theory.lcs.mit.edu/rivest/rc6.pdf
Rayes, M.O., Trevisan, V., Wang, P.: Factorization of Chebyshev polynomials, http://icm.mcs.kent.edu/reports/index1998.html
Wan, D., Lidl, R.: Permutation polynomials of the form x r f(x (q − 1)/d) and their group structure. Monatsh. Math. 112, 149–163 (1991)
Wang, L.: On permutation polynomials. Finite Fields Appl. 8, 311–322 (2002)
Sun, J., Takeshita, O.Y.: Interleavers for Turbo codes using permutation polynomials over integer rings. IEEE Trans. Inform. Theory 51(1), 101–119 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Q. (2007). Cyclotomic Mapping Permutation Polynomials over Finite Fields. In: Golomb, S.W., Gong, G., Helleseth, T., Song, HY. (eds) Sequences, Subsequences, and Consequences. Lecture Notes in Computer Science, vol 4893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77404-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-77404-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77403-7
Online ISBN: 978-3-540-77404-4
eBook Packages: Computer ScienceComputer Science (R0)