Abstract
Bent functions \(f:\mathbb{F}_2^m\rightarrow \mathbb{F}_2\) achieve largest distance to all linear functions. Equivalently, their spectrum with respect to the Hadamard-Walsh transform is flat (i.e. all spectral values have the same absolute value). That is equivalent to saying that the function f has optimum periodic autocorrelation properties. Negaperiodic correlation properties of f are related to another unitary transform called the nega-Hadamard transform. A function is called negabent if the spectrum under the nega-Hadamard transform is flat. In this paper, we consider functions f which are simultaneously bent and negabent, i.e. which have optimum periodic and negaperiodic properties. Several constructions and classifications are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parker, M.G.: The constabent properties of Golay-Davis-Jedwab sequences. In: IEEE Int. Symp. Inform. Theory, Sorrento, p. 302 (2000)
Riera, C., Parker, M.G.: Generalized bent criteria for boolean functions (I). IEEE 52, 4142–4159 (2006)
Riera, C., Parker, M.G.: One and Two-Variable Interlace Polynomials: A Spectral Interpretation. In: Ytrehus (ed.) WCC 2005. LNCS, vol. 3969, pp. 397–411. Springer, Heidelberg (2006)
Schmidt, K.U.: Quaternary constant-amplitude codes for multicode cdma. In: Submitted to IEEE Transactions on Information Theory (2006)
Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, Cambridge University Press, Cambridge (to appear)
Assmus Jr., E.F., Key, J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992)
Golomb, S.W., Gong, G.: Signal design for good correlation. Cambridge University Press, Cambridge (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Parker, M.G., Pott, A. (2007). On Boolean Functions Which Are Bent and Negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, HY. (eds) Sequences, Subsequences, and Consequences. Lecture Notes in Computer Science, vol 4893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77404-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-77404-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77403-7
Online ISBN: 978-3-540-77404-4
eBook Packages: Computer ScienceComputer Science (R0)