Skip to main content

A Novel Approach for Filtering Junk Images from Google Search Results

  • Conference paper
Advances in Multimedia Modeling (MMM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4903))

Included in the following conference series:

Abstract

Keyword-based image search engines such as Google Images are now very popular for accessing large amount of images on the Internet. Because only the text information that are directly or indirectly linked to the images are used for image indexing and retrieval, most existing image search engines such as Google Images may return large amount of junk images which are irrelevant to the given queries. To filter out the junk images from Google Images, we have developed a kernel-based image clustering technique to partition the images returned by Google Images into multiple visually-similar clusters. In addition, users are allowed to input their feedbacks for updating the underlying kernels to achieve more accurate characterization of the diversity of visual similarities between the images. To help users assess the goodness of image kernels and the relevance between the returned images, a novel framework is developed to achieve more intuitive visualization of large amount of returned images according to their visual similarity. Experiments on diverse queries on Google Images have shown that our proposed algorithm can filter out the junk images effectively. Online demo is also released for public evaluation at: http://www.cs.uncc.edu/~jfan/google demo/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fan, J., Gao, Y., Luo, H.: Multi-level annotation of natural scenes using dominant image compounds and semantic concepts. ACM Multimedia (2004)

    Google Scholar 

  2. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. on PAMI (2000)

    Google Scholar 

  3. He, X., Ma, W.-Y., King, O., Li, M., Zhang, H.J.: Learning and inferring a semantic space from user’s relevance feedback. ACM Multimedia (2002)

    Google Scholar 

  4. Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval. ACM Multimedia, 107–118 (2001)

    Google Scholar 

  5. Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance Feedback: A power tool in interactive content-based image retrieval. IEEE Trans. on CSVT 8(5), 644–655 (1998)

    Google Scholar 

  6. Fergus, R., Perona, P., Zisserman, A.: A Visual Category Filter for Google Images. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, Springer, Heidelberg (2004)

    Google Scholar 

  7. Fergus, R., Fei-Fei, L., Oerona, P., Zisserman, A.: Learning object categories from Google’s image search. In: IEEE CVPR (2006)

    Google Scholar 

  8. Cai, D., He, X., Li, Z., Ma, W.-Y., Wen, J.-R.: Hierarchical clustering of WWW image search results using visual, textual, and link information. ACM Multimedia (2004)

    Google Scholar 

  9. Wang, X.-J., Ma, W.-Y., Xue, G.-R., Li, X.: Multi-modal similarity propagation and its application for web image retrieval. ACM Multimedia (2004)

    Google Scholar 

  10. Gao, B., Liu, T.-Y., Qin, T., Zhang, X., Cheng, Q.-S., Ma, W.-Y.: Web image clustering by consistent utilization of visual features and surrounding texts. ACM Multimedia (2005)

    Google Scholar 

  11. Ma, W.-Y., Manjunath, B.S.: Texture features and learning similarity. IEEE CVPR, 425–430 (1996)

    Google Scholar 

  12. Fan, J., Gao, Y., Luo, H., Satoh, S.: New approach for hierarchical classifier training and multi-level image annotation. In: Satoh, S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 1–12. Springer, Heidelberg (2008)

    Google Scholar 

  13. Schölkopf, B., Smola, A.J., Müller, K.-R.: Kernel principal component analysis. Neural Computation 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  14. Vendrig, J., Worring, M., Smeulders, A.W.M.: Filter image browsing: Interactive image retrieval by using database overviews. Multimedia Tools and Applications 15, 83–103 (2001)

    Article  MATH  Google Scholar 

  15. Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. ACM SIGIR (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shin’ichi Satoh Frank Nack Minoru Etoh

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Y., Fan, J., Luo, H., Satoh, S. (2008). A Novel Approach for Filtering Junk Images from Google Search Results. In: Satoh, S., Nack, F., Etoh, M. (eds) Advances in Multimedia Modeling. MMM 2008. Lecture Notes in Computer Science, vol 4903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77409-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77409-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77407-5

  • Online ISBN: 978-3-540-77409-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics