Abstract
In this paper, we have proposed a novel algorithm to achieve automatic multi-level image annotation by incorporating concept ontology and multi-task learning for hierarchical image classifier training. To achieve more reliable image classifier training in high-dimensional heterogeneous feature space, a new algorithm is proposed by incorporating multiple kernels for diverse image similarity characterization, and a multiple kernel learning algorithm is developed to train the SVM classifiers for the atomic image concepts at the first level of the concept ontology. To enable automatic multi-level image annotation, a novel hierarchical boosting algorithm is proposed by incorporating concept ontology and multi-task learning to achieve hierarchical image classifier training.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fan, J., Gao, Y., Luo, H.: Multi-level annotation of natural scenes using dominant image compounds and semantic concepts. ACM Multimedia (2004)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. on PAMI (2000)
Lim, J., Tian, Q., Mulhem, P.: Home photo content modeling for personalized event-based retrieval. IEEE Multimedia (2003)
Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimedia (2006)
Yelizaveta, M., Chua, T.-S., Jain, R.: Semi-supervised annotation of brushwork in paintings domain using serial combinations of multiple experts. ACM Multimedia (2006)
Ma, W.-Y., Manjunath, B.S.: Texture features and learning similarity. In: IEEE CVPR, pp. 425–430 (1996)
Lowe, D.: Distinctive Image Features from Scale Invariant Keypoints. Intl Journal of Computer Vision 60, 91–110 (2004)
Li, J., Wang, J.Z.: Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach. IEEE Trans. on PAMI 25(9), 1075–1088 (2003)
Fan, J., Luo, H., Gao, Y., Hacid, M.-S.: Mining image databases on semantics via statistical learning. In: ACM SIGKDD (2005)
Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: IEEE ICCV, pp. 408–415 (2001)
Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: ACM SIGIR (2007)
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–374 (2000)
Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE CVPR (2004)
Yu, K., Schwaighofor, A., Tresp, V., Ma, W.-Y., Zhang, H.J.: Collaborative ensemble learning: Combining content-based information filtering via hierarchical Bayes. In: Proc. of Intl. Conf. on Uncertainty in Artificial Intelligence (UAI) (2003)
Shi, R., Chua, T.-S., Lee, C.-H., Gao, S.: Bayesian learning of hierarchical multinomial mixture models of concepts for automatic image annotation. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, Springer, Heidelberg (2006)
Knuth, D.E.: The Art of Computer Programming. In: Sorting and Searching, vol. 3, Addison-Wesley, Reading (1978)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, J., Gao, Y., Luo, H., Satoh, S. (2008). New Approach for Hierarchical Classifier Training and Multi-level Image Annotation. In: Satoh, S., Nack, F., Etoh, M. (eds) Advances in Multimedia Modeling. MMM 2008. Lecture Notes in Computer Science, vol 4903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77409-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-77409-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77407-5
Online ISBN: 978-3-540-77409-9
eBook Packages: Computer ScienceComputer Science (R0)