Skip to main content

New Approach for Hierarchical Classifier Training and Multi-level Image Annotation

  • Conference paper
Advances in Multimedia Modeling (MMM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4903))

Included in the following conference series:

Abstract

In this paper, we have proposed a novel algorithm to achieve automatic multi-level image annotation by incorporating concept ontology and multi-task learning for hierarchical image classifier training. To achieve more reliable image classifier training in high-dimensional heterogeneous feature space, a new algorithm is proposed by incorporating multiple kernels for diverse image similarity characterization, and a multiple kernel learning algorithm is developed to train the SVM classifiers for the atomic image concepts at the first level of the concept ontology. To enable automatic multi-level image annotation, a novel hierarchical boosting algorithm is proposed by incorporating concept ontology and multi-task learning to achieve hierarchical image classifier training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fan, J., Gao, Y., Luo, H.: Multi-level annotation of natural scenes using dominant image compounds and semantic concepts. ACM Multimedia  (2004)

    Google Scholar 

  2. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. on PAMI  (2000)

    Google Scholar 

  3. Lim, J., Tian, Q., Mulhem, P.: Home photo content modeling for personalized event-based retrieval. IEEE Multimedia  (2003)

    Google Scholar 

  4. Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimedia  (2006)

    Google Scholar 

  5. Yelizaveta, M., Chua, T.-S., Jain, R.: Semi-supervised annotation of brushwork in paintings domain using serial combinations of multiple experts. ACM Multimedia  (2006)

    Google Scholar 

  6. Ma, W.-Y., Manjunath, B.S.: Texture features and learning similarity. In: IEEE CVPR, pp. 425–430 (1996)

    Google Scholar 

  7. Lowe, D.: Distinctive Image Features from Scale Invariant Keypoints. Intl Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  8. Li, J., Wang, J.Z.: Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach. IEEE Trans. on PAMI 25(9), 1075–1088 (2003)

    Google Scholar 

  9. Fan, J., Luo, H., Gao, Y., Hacid, M.-S.: Mining image databases on semantics via statistical learning. In: ACM SIGKDD (2005)

    Google Scholar 

  10. Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: IEEE ICCV, pp. 408–415 (2001)

    Google Scholar 

  11. Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: ACM SIGIR (2007)

    Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE CVPR (2004)

    Google Scholar 

  14. Yu, K., Schwaighofor, A., Tresp, V., Ma, W.-Y., Zhang, H.J.: Collaborative ensemble learning: Combining content-based information filtering via hierarchical Bayes. In: Proc. of Intl. Conf. on Uncertainty in Artificial Intelligence (UAI) (2003)

    Google Scholar 

  15. Shi, R., Chua, T.-S., Lee, C.-H., Gao, S.: Bayesian learning of hierarchical multinomial mixture models of concepts for automatic image annotation. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, Springer, Heidelberg (2006)

    Google Scholar 

  16. Knuth, D.E.: The Art of Computer Programming. In: Sorting and Searching, vol. 3, Addison-Wesley, Reading (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shin’ichi Satoh Frank Nack Minoru Etoh

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, J., Gao, Y., Luo, H., Satoh, S. (2008). New Approach for Hierarchical Classifier Training and Multi-level Image Annotation. In: Satoh, S., Nack, F., Etoh, M. (eds) Advances in Multimedia Modeling. MMM 2008. Lecture Notes in Computer Science, vol 4903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77409-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77409-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77407-5

  • Online ISBN: 978-3-540-77409-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics