Skip to main content

Snap-Stabilizing Waves in Anonymous Networks

  • Conference paper
Distributed Computing and Networking (ICDCN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4904))

Included in the following conference series:

Abstract

We propose the first snap-stabilizing wave algorithm for anonymous networks. In the worst case, a process decides in O(n + D) time units, where n and D are the number of process and the diameter of the network, respectively. The proposed algorithm uses a self-stabilizing underlying unison protocol. If the underlying unison is stabilized when a process request a wave, then a decide event occurs in an optimal time, i.e., O(D) time units. The proposed solution is generic in the sense that, it can be used for any static or dynamic scheme which is feasible in an anonymous network. In particular, as an application of our scheme, we provide a snap-stabilizing causal atomic broadcast for anonymous networks, which can be used as a pipeline of messages.

This research is supported in part by Région Picardie (France), Project “APREDY”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, A., Gouda, M.G.: Distributed reset. IEEE Transactions on Computers 43, 1026–1038 (1994)

    Article  MATH  Google Scholar 

  2. Boulinier, C., Petit, F.: Self-stabilizing wavelets and \(\varrho\)-hops coordination. Technical Report TR07-05, LaRIA, University of Picardie Jules Verne, France (2007), https://hal.ccsd.cnrs.fr/hal-00157946

  3. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC 2004. Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing, pp. 150–159 (2004)

    Google Scholar 

  4. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree networks. In: WSS 1999. Proceedings of the Forth Workshop on Self-Stabilizing Systems, pp. 78–85. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  5. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilizing PIF algorithm in arbitrary networks. In: ICDCS 2002. IEEE 22nd International Conference on Distributed Computing Systems, pp. 199–206. IEEE Computer Society Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  6. Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search in arbitrary networks. The Computer Journal 49(3), 268–280 (2006)

    Article  Google Scholar 

  7. Datta, A.K., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token circulation in arbitrary rooted networks. Distributed Computing 13(4), 207–218 (2000)

    Article  Google Scholar 

  8. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators in unreliable directed networks. Technical Report TR 1361, LRI, Orsay, France (2003)

    Google Scholar 

  9. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing 7, 3–16 (1993)

    Article  Google Scholar 

  11. Ducourthial, B.: New operators for computing with associative nets. In: SIROCCO 1998. The 5th International Colloquium On Structural Information and Communication Complexity Proceedings, pp. 51–65. Carleton University Press, Ottawa (1998)

    Google Scholar 

  12. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distributed Computing 14, 147–162 (2001)

    Article  Google Scholar 

  13. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and related problems. Technical Report TR94-1425 (1994), http://citeseer.ist.psu.edu/hadzilacos94modular.html

  14. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees. Information Processing Letters 41, 109–117 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnen, C.: Memory-efficient self-stabilizing algorithm to construct BFS spanning trees. In: Third Workshop on Self-Stabilizing Systems, pp. 125–140. Carleton University Press, Ottawa (1997)

    Google Scholar 

  16. Tel, G.: Total algorithms. In: Vogt, F.H. (ed.) Concurrency 1988. LNCS, vol. 335, pp. 277–291. Springer, Heidelberg (1988)

    Google Scholar 

  17. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shrisha Rao Mainak Chatterjee Prasad Jayanti C. Siva Ram Murthy Sanjoy Kumar Saha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boulinier, C., Levert, M., Petit, F. (2007). Snap-Stabilizing Waves in Anonymous Networks. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds) Distributed Computing and Networking. ICDCN 2008. Lecture Notes in Computer Science, vol 4904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77444-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77444-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77443-3

  • Online ISBN: 978-3-540-77444-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics