Skip to main content

Narrowing Power vs. Efficiency in Synchronous Set Agreement

  • Conference paper
Distributed Computing and Networking (ICDCN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4904))

Included in the following conference series:

  • 704 Accesses

Abstract

The k-set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that solves the k-set agreement problem in synchronous systems that can suffer up to t crash failures requires \(\lfloor \frac{t}{k} \rfloor +1\) rounds in the worst case. It has also been shown that it is possible to design early deciding algorithms where no process decides and halts after \(\min\big( \lfloor \frac{f}{k} \rfloor +2, \lfloor \frac{t}{k} \rfloor +1\big)\) rounds, where f is the number of actual crashes in a run (0 ≤ f ≤ t).

This paper explores a new direction to solve the k-set agreement problem in a synchronous system. It considers that the system is enriched with base objects (denoted [m,ℓ]_SA objects) that allow solving the ℓ-set agreement problem in a set of m processes (m < n). The paper has several contributions. It first proposes a synchronous k-set agreement algorithm that benefits from such underlying base objects. This algorithm requires \(O(\frac{t \ell}{m k})\) rounds, more precisely, \(R_t= \lfloor \frac{t}{\Delta} \rfloor +1\) rounds, where \(\Delta= m \lfloor \frac{k}{\ell} \rfloor + (k\mbox{ mod } \ell)\). The paper then shows that this bound, that involves all the parameters that characterize both the problem (k) and its environment (t, m and ℓ), is a lower bound. The proof of this lower bound sheds additional light on the deep connection between synchronous efficiency and asynchronous computability. Finally, the paper extends its investigation to the early deciding case. It presents a k-set agreement algorithm that directs the processes to decide and stop by round \(R_f=\min\big(\lfloor \frac{f}{\Delta} \rfloor +2, \lfloor \frac{t}{\Delta} \rfloor +1\big)\). These bounds generalize the bounds previously established for solving the k-set problem in pure synchronous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilera, M.K., Toueg, S.: A Simple Bivalency Proof that t-Resilient Consensus Requires t + 1 Rounds. Information Processing Letters 71, 155–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aguilera, M.K., Le Lann, G., Toueg, S.: On the Impact of Fast failure Detectors on Real-Time Fault-Tolerant Systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 354–369. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations. In: STOC 1993. Proc. 25th ACM Symposium on Theory of Distributed Computing, pp. 91–100. ACM Press, New York (1993)

    Chapter  Google Scholar 

  4. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems. Information and Computation 105, 132–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chaudhuri, S., Herlihy, M., Lynch, N., Tuttle, M.: Tight Bounds for k-Set Agreement. Journal of the ACM 47(5), 912–943 (2000)

    Article  MathSciNet  Google Scholar 

  6. Dolev, D., Reischuk, R., Strong, R.: Early Stopping in Byzantine Agreement. Journal of the ACM 37(4), 720–741 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fischer, M.J., Lynch, N.A.: A Lower Bound on the Time to Assure Interactive Consistency. Information Processing Letters 14(4), 183–186 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with One Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gafni, E.: Round-by-round Fault Detectors: Unifying Synchrony and Asynchrony. In: PODC 2000. Proc. 17th ACM Symp. on Principles of Dist. Computing, pp. 143–152. ACM Press, New York (1998)

    Google Scholar 

  10. Gafni, E., Guerraoui, R., Pochon, B.: From a Static Impossibility to an Adaptive Lower Bound: The Complexity of Early Deciding Set Agreement. In: STOC 2005. Proc. 37th ACM Symposium on Theory of Computing, pp. 714–722. ACM Press, New York (2005)

    Chapter  Google Scholar 

  11. Herlihy, M.P.: Wait-Free Synchronization. ACM TOPLAS 13(1), 124–149 (1991)

    Article  Google Scholar 

  12. Herlihy, M.P., Penso, L.D.: Tight Bounds for k-Set Agreement with Limited Scope Accuracy Failure Detectors. Distributed Computing 18(2), 157–166 (2005)

    Article  Google Scholar 

  13. Herlihy, M.P., Rajsbaum, S.: Algebraic Spans. MSCS 10(4), 549–573 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal of the ACM 46(6), 858–923 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lamport, L., Fischer, M.: Byzantine Generals and Transaction Commit Protocols. Unpublished manuscript, pages 16 (April 1982)

    Google Scholar 

  16. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on Input Vectors for Consensus Solvability in Asynchronous Distributed Systems. Journal of the ACM 50(6), 922–954 (2003)

    Article  MathSciNet  Google Scholar 

  17. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: The Combined Power of Conditions and Failure Detectors to Solve Asynchronous Set Agreement. In: PODC 2005. Proc. 24th ACM Symposium on Principles of Distributed Computing, pp. 179–188. ACM Press, New York (2005)

    Google Scholar 

  18. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Synchronous Condition-Based Consensus. Distributed Computing 18(5), 325–343 (2006)

    Article  Google Scholar 

  19. Mostéfaoui, A., Raynal, M.: k-Set Agreement with Limited Accuracy Failure Detectors. In: PODC 2000. 19th ACM Symp. on Principles of Distributed Computing, pp. 143–152 (2000)

    Google Scholar 

  20. Mostéfaoui, A., Raynal, M.: Randomized Set Agreement. In: SPAA 2001. Proc. 13th ACM Symposium on Parallel Algorithms and Architectures, pp. 291–297. ACM Press, New York (2001)

    Chapter  Google Scholar 

  21. Mostéfaoui, A., Raynal, M., Travers, C.: Narrowing power vs efficiency in synchronous set agreement. Tech Report #1836, IRISA, Université de Rennes (France), pages 13 (2007)

    Google Scholar 

  22. Raynal, M., Travers, C.: Synchronous Set Agreement: A Concise Guided Tour (with open problems). In: PRDC 2006. Proc. 12th Int’l IEEE Pacific Rim Dependable Computing Symposium, pp. 267–274. IEEE Computer Press, Los Alamitos (2006)

    Google Scholar 

  23. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shrisha Rao Mainak Chatterjee Prasad Jayanti C. Siva Ram Murthy Sanjoy Kumar Saha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mostefaoui, A., Raynal, M., Travers, C. (2007). Narrowing Power vs. Efficiency in Synchronous Set Agreement. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds) Distributed Computing and Networking. ICDCN 2008. Lecture Notes in Computer Science, vol 4904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77444-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77444-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77443-3

  • Online ISBN: 978-3-540-77444-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics