Skip to main content

Control of Muscle Force During Exercise Using a Musculoskeletal-Exoskeletal Integrated Human Model

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 39))

Abstract

The aim of this paper is to arbitrarily modify the load force of any selected muscle by using an exoskeleton, thus enabling “pinpointed” motion support, rehabilitation, and training. An advanced dynamic model, called a musculoskeletal-exoskeletal integrated human model, is developed. The driving-forces of the pneumatic actuators are designated by a muscle force control algorithm using the integrated model. A prototype power-assisting system has been developed using pneumatic rubber actuators. The validity of the method has been confirmed by measuring surface electromyographic (EMG) signals of related muscles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kazerooni, H.: Extender: A Case Study for Human-Robot Interaction via Transfer of Power and Information Signals. In: Proc. IEEE Int. Workshop on Robot and Human Communication, pp. 10–20 (1993)

    Google Scholar 

  2. Lee, S., Sankai, Y.: Power Assist Control for Walking Aid with HAL-3 Based on EMG and Impedance Adjustment around Knee Joint. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1499–1504 (2002)

    Google Scholar 

  3. Maurel, W., Thalmann, D.: A Case Study on Human Upper Limb Modelling for Dynamic Simulation. Computer Methods in Biomechanics and Biomechanical Engineering 2(1), 65–82 (1999)

    Article  Google Scholar 

  4. Delp, S.L., et al.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomedical Engineering 37(8), 757–767 (1990)

    Article  Google Scholar 

  5. Lemay, M.A., Crago, P.E.: A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomechanics 29, 1319–1330 (1996)

    Article  Google Scholar 

  6. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomechanics 14, 793–801 (1981)

    Article  Google Scholar 

  7. Karlsson, D., Peterson, B.: Towards a model for force predictions in the human shoulder. J. Biomechanics 25, 189–199 (1992)

    Article  Google Scholar 

  8. MotCo project, http://www.motco.dir.bg/Data/PCSA.html

  9. Veeger, H.E.J., et al.: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. J. Biomechanics 24, 615–629 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ueda, J., Matsugashita, M., Oya, R., Ogasawara, T. (2008). Control of Muscle Force During Exercise Using a Musculoskeletal-Exoskeletal Integrated Human Model. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics