Skip to main content

Using Scene Similarity for Place Labelling

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 39))

  • 4250 Accesses

Summary

This paper is about labelling regions of a mobile robot’s workspace using scene appearance similarity. We do this by operating on a single matrix which expresses the pairwise similarity between all captured scenes. We describe and motivate a sequence of algorithms which, in conjunction with spatial constraints provided by the continuous motion of the vehicle, produce meaningful workspace segmentations. We provide detailed experimental results from various outdoor trials.

This work was support by the SEAS DTC program. AA001 and AA003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ulrich, I., Nourbakhsh, I.: Appearance-based place recognition for topological localization. In: Proceedings of International Conference on Robotics and Automation (2000)

    Google Scholar 

  2. Newman, P., Cole, D., Ho, K.: Outdoor SLAM using visual appearance and laser ranging. In: IEEE International Conference on Robotics and Automation (May 2006)

    Google Scholar 

  3. Porta, J., Kroese, B.J.A.: Appearance-based concurrent map building and localization. Robotics and Autonomous Systems 54(2), 159–164 (2005)

    Article  Google Scholar 

  4. Piatetsky-Shapiro, G., Matheus, C., Smyth, P., Uthurusamy, R.: Kdd-93 - progress and challenges in knowledge discovery in databases. Ai Magazine 15, 77–82 (1994)

    Google Scholar 

  5. Berry, M.W.: Survey of Text Mining: Clustering, Classification, and Retrieval. Springer, New York (2003)

    Google Scholar 

  6. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  7. Hofmann, T.: Probabilistic Latent Semantic Analysis. In: UAI. Proc. of Uncertainty in Artificial Intelligence (1999)

    Google Scholar 

  8. Bosch, A., Zisserman, A., Munoz, X.: Scene Classification via pLSA. In: Proc. of the European Conference on Computer Vision (2006)

    Google Scholar 

  9. Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning Object Categories from Google’s Image Search. In: Proc. of the Int. Conference on Computer Vision (2005)

    Google Scholar 

  10. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. of the Int. Conference on Computer Vision, Nice, France (October 2003)

    Google Scholar 

  11. Mitchell, T.M.: Machine Learning. McGraw-Hill Science/Engineering/Math., New York (1997)

    MATH  Google Scholar 

  12. Fei-Fei, L., Fergus, R., Perona, P.: A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories. In: Proceedings of the 9th International Conference on Computer Vision, Nice, France, pp. 1134–1141 (2003)

    Google Scholar 

  13. Mikolajczyk, C., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision (1), 63–86 (2004)

    Article  Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th International Conference on Computer Vision, Kerkyra, pp. 1150–1157 (1999)

    Google Scholar 

  15. Jones, K.S.: Exhaustivity and specificity. Journal of Documentation 28(1), 11–21 (1972)

    Article  Google Scholar 

  16. Stachniss, C., Martínez-Mozos, O., Rottmann, A., Burgard, W.: Semantic labeling of places. In: Proceedings of the International Symposium on Robotics Research, San Francisco, CA, USA (2005)

    Google Scholar 

  17. Zivkovic, Z., Bakker, B., Kröse, B.: Hierarchical map building using visual landmarks and geometric constraints. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7–12 (2005)

    Google Scholar 

  18. Kruskal, J.B., Wish, M.: Multidimensional scaling. Sage University Paper series on Quantitative Applications in the Social Sciences, 07–011 (1978)

    Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Ripley, B.D.: Pattern recognition and neural networks. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  21. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Chichester (2000)

    Google Scholar 

  22. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis. Oxford University Press Inc., New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posner, I., Schroeter, D., Newman, P.M. (2008). Using Scene Similarity for Place Labelling. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics