Skip to main content

Metaphor Modeling on the Semantic Web

  • Conference paper
Active Conceptual Modeling of Learning (ACM-L 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4512))

Included in the following conference series:

  • 608 Accesses

Abstract

Metaphor is a high-level abstract concept that can be an important part of active conceptual modeling. In this paper, we use the extended Unified Modeling Language (UML) for metaphor modeling. We discuss how to create UML diagrams to capture knowledge about metaphors. The metaphor-based processing system on the Semantic Web can support new query/search operations. Such a computer system can be used for a broad spectrum of applications such as predicting surprises (e.g., terrorist attacks) or generating automatically new innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bemers-Lee, T., Hendler, J., Lassila, 0.: The Semantic Web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison Wesley, Reading, MA (1999)

    Google Scholar 

  3. Czejdo, B., Mappus, R., Messa, K.: The Impact of UML Diagrams on Knowledge Modeling, Discovery and Presentations. Journal of Information Technology Impact 3(1), 25–38 (2003)

    Google Scholar 

  4. Czejdo, B., Czejdo, J., Lehman, J., Messa, K.: Graphical Queries for XML Documents and Their Applications for Accessing Knowledge in UML Diagrams. In: Proceedings of the First Symposium on Databases, Data Warehousing and Knowledge Discovery, Baden Baden, Germany, pp. 69–85 (2003)

    Google Scholar 

  5. Czejdo, B., Czejdo, J., Eick, C., Messa, K., Vernace, M.: Rules in UML Class Diagrams. Opportunities of Change. In: Proceedings of the Third International Economic Congress, Sopot, Poland, pp. 289–298 (2003)

    Google Scholar 

  6. Delteil, A., Faron, C.: A Graph-Based Knowledge Representation Language. In: Proceedings of the 15th European Conference on Artificial Intelligence (ECAI), Lyon, France (2002)

    Google Scholar 

  7. Dori, D., Reinhartz-Berger, I., Sturm, A.: OPCAT—A Bimodal CASE Tool for Object-Process Based System Development. In: ICEIS 2003. Proceedings of the IEEE/ACM 5th International Conference on Enterprise Information Systems, Angers, France, pp. 286–291 (2003), http://www.ObjectProcess.org

  8. Lehrnan, F. (ed.): Semantic Networks in Artificial Intelligence. Pergamon, Oxford, UK (1999)

    Google Scholar 

  9. Mayer, R.E.: Multimedia Learning. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  10. McTear, M.F. (ed.): Understanding Cognitive Science. Ellis Horwood, Chichester, UK (1998)

    Google Scholar 

  11. Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, New York (1984)

    Book  Google Scholar 

  12. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison-Wesley, Reading, MA (1999)

    Google Scholar 

  13. Rumbaugh, J.: Objects in the Constitution: Enterprise Modeling. Journal of Object Oriented Programming (1993)

    Google Scholar 

  14. Schulte, R., Biguenet, J.: Theories of Translation. The University of Chicago Press, Chicago (1992)

    Google Scholar 

  15. Smith, M.K., McGuinness, D., Volz, R., Welty, C.: Web Ontology Language (OWL) Guide Version 1.0. W3CWorking Draft (2002)

    Google Scholar 

  16. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, MA (1984)

    MATH  Google Scholar 

  17. Sowa, I.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole, Pacific Grove, CA (1999)

    Google Scholar 

  18. Gennari, M.A., Musen, R.W., Fergerson, W.E., Grosso, M., Crubezy, H., Eriksson, N.F., Noy, S.W.T.: The Evolution of Protégé: An Environment for Knowledge-Based Systems Development (2002)

    Google Scholar 

  19. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: Swoop - a web ontology editing browser, Journal of Web Semantics 4 (1) (2005)

    Google Scholar 

  20. Chen, P.P., Wong, L.Y.: A Proposed Preliminary Framework for Conceptual Modeling of Learning from Surprises. In: Arabnia, H.R., Joshua, R. (eds.) ICAI 2005. Proceedings of the 2005 International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, June 27-30, 2005, vol. 2, pp. 905–910. CSREA Press (2005)

    Google Scholar 

  21. Thalheim, B., Dusterhoft, A.: The Use of Metaphorical Structures for Internet Sites. Data and Knowledge Engineering Journal 35(2), 161–180 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter P. Chen Leah Y. Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czejdo, B.D., Biguenet, J., Biguenet, J. (2007). Metaphor Modeling on the Semantic Web. In: Chen, P.P., Wong, L.Y. (eds) Active Conceptual Modeling of Learning. ACM-L 2006. Lecture Notes in Computer Science, vol 4512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77503-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77503-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77502-7

  • Online ISBN: 978-3-540-77503-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics