Skip to main content

Implementation of an UWB Impulse-Radio Acquisition and Despreading Algorithm on a Low Power ASIP

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4917))

Abstract

Impulse Radio-based Ultra-Wideband (UWB) technology is a strong candidate for the implementation of ultra low power air interfaces in low data rate sensor networks. A major challenge in UWB receiver design is the low-power implementation of the relatively complex digital baseband algorithms that are required for timing acquisition and data demodulation. Silicon Hive offers low-power application specific instruction set processor (ASIP) solutions. In this paper we target the low-power implementation of an UWB receiver’s digital baseband algorithm on an ASIP, based on Silicon Hive’s solutions.

We approach the problem as follows. First we implement the algorithm on an existing ASIP and analyze the power consumption. Next we apply optimizations such as algorithmic simplification, adding a loopcache and adding custom operations to lower the dissipation of the ASIP. The resulting ASIP consumes 0.98 nJ (with a spreading factor of 16) per actual data bit, which is lower than an existing application specific integrated circuit (ASIC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE Std P802.15.4a/d6, PART 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs): amendment to add alternate PHY (2006)

    Google Scholar 

  2. Badaroglu, M., Desset, C., Ryckaert, J., et al.: Analog-digital partitioning for low-power UWB impulse radios under CMOS scaling. EURASIP Journal on Wireless Communications and Networking 2006, Article ID 72430 8 (2006)

    Article  Google Scholar 

  3. Ryckaert, J., Badaroglu, M., Desset, C., et al.: Carrier-based UWB impulse radio: simplicity, flexibility, and pulser implementation in 180 nm CMOS. In: CU 2005. Proceedings of the IEEE International Conference on Ultra-Wideband, Zurich, Switzerland, pp. 432–437 (2005)

    Google Scholar 

  4. Ryckaert, J., Badaroglu, M., DeHeyn, V., et al.: A 16mA UWB 3-to-5GHz 20MPulses/s quadrature analog correlation receiver in 180 nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco Marriott, California, USA (2006)

    Google Scholar 

  5. Kastrup, B., van Wel, A.: Moustique: Smaller than an ASIC and fully programmable. In: International Symposium on System-on-Chip 2003, Silicon Hive, Philips Technology Incubator, The Netherlands, vol. 2003 (2003)

    Google Scholar 

  6. Patterson, D.A., Hennessy, J.L.: Computer organization and design, 2nd edn. The hardware/software interface. Morgan Kaufmann Publishers Inc, San Francisco (1998)

    MATH  Google Scholar 

  7. Munch, M., Wurth, B., Mehra, R., Sproch, J., Wehn, N.: Automating RT-level operand isolation to minimize power consumption in datapaths. In: DATE 2000. Proceedings of the conference on Design, automation and test in Europe, pp. 624–633. ACM Press, New York (2000)

    Chapter  Google Scholar 

  8. Li, H., Bhunia, S., Chen, Y., Vijaykumar, T.N., Roy, K.: Deterministic clock gating for microprocessor power reduction. In: HPCA 2003. Proceedings of the 9th International Symposium on High-Performance Computer Architecture, p. 113. IEEE Computer Society Press, Washington, DC, USA (2003)

    Google Scholar 

  9. Garrett, D., Stan, M., Dean, A.: Challenges in clockgating for a low power ASIC methodology. In: ISLPED 1999. Proceedings of the 1999 international symposium on Low power electronics and design, pp. 176–181. ACM Press, New York (1999)

    Chapter  Google Scholar 

  10. Heo, S.: A low-power 32-bit datapath design. Master’s thesis, Massachusetts Institute of Technology (2000)

    Google Scholar 

  11. Jiang, H., Marek-Sadowska, M., Nassif, S.R.: Benefits and costs of power-gating technique. In: ICCD 2005. Proceedings of the 2005 International Conference on Computer Design, pp. 559–566. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  12. Agarwal, K., Deogun, H.S., Sylvester, D., Nowka, K.: Power gating with multiple sleep modes. In: ACM/IEEE International Symposium on Quality Electronic Design (2006)

    Google Scholar 

  13. Arnold, M., Corporaal, H.: Automatic detection of recurring operation patterns. In: CODES 1999, pp. 22–26. ACM Press, New York (1999)

    Chapter  Google Scholar 

  14. Athanas, P.M., Silverman, H.F.: Processor reconfiguration through instruction-set metamorphosis. Computer 26(3), 11–18 (1993)

    Article  Google Scholar 

  15. Ysebodt, L., Nil, M.D., Huisken, J., Berekovic, M., Zhao, Q., Bouwens, F.J., van Meerbergen, J.: Design of low power wireless sensor nodes on energy scanvengers for biomedical monitoring. In: Vassiliadis, S., Bereković, M., Hämäläinen, T.D. (eds.) SAMOS 2007. LNCS, vol. 4599, Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Per Stenström Michel Dubois Manolis Katevenis Rajiv Gupta Theo Ungerer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Govers, J. et al. (2008). Implementation of an UWB Impulse-Radio Acquisition and Despreading Algorithm on a Low Power ASIP. In: Stenström, P., Dubois, M., Katevenis, M., Gupta, R., Ungerer, T. (eds) High Performance Embedded Architectures and Compilers. HiPEAC 2008. Lecture Notes in Computer Science, vol 4917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77560-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77560-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77559-1

  • Online ISBN: 978-3-540-77560-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics