Abstract
Central to the process of query optimization in all real-life modern-day Database Management Systems (DBMS) is the use of histograms. These have been used for decades in approximating query result sizes in the query optimizer, and methods such as the Equi-Width and Equi-Depth histograms have been incorporated in all real-life systems. This is because histograms are simple structures, and can be easily utilized in determining efficient Query Evaluation Plans (QEPs). This paper demonstrates how we can incorporate two recently-developed histogram methods into the ORACLE real-life DBMS. These two new histograms methods were introduced by Oommen and Thiyagarajah [1], and called the the Rectangular Attribute Cardinality Map (R-ACM), and the Trapezoidal Attribute Cardinality Map (T-ACM).
The superiority of the R-ACM and the T-ACM in yielding more accurate query result size estimates has been well demonstrated, and the resulting superior QEPs for a theoretically-modeled database was shown in [2]. In this paper we make a “conceptual leap” and demonstrate how the ACMs can be incorporated into a real-life DBMS. This has been done by designing and implementing a prototype which sits on top of an ORACLE 9i system. The integration is achieved in C/C++ and PL/SQL, and serves as a prototype “plug-in” to the ORACLE system, since it is fully integrated and completely transparent to users. The superiority of utilizing the ACM histograms is rigorously validated by conducting an extensive set of experiments on the TPC-H benchmark data sets, and by testing on equi-select and equi-join queries. The entire set of experimental results obtained by integrating the underlying algorithms into the ORACLE query optimizer can be found in [3].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thiyagarajah, M.: Attribute Cardinality Maps: New Query Result- Size Estimation Techniques for Database Systems. Ph.D. Thesis, School of Computer Science, Carleton Univ., Ottawa (1999)
Oommen, B.J., Rueda, L.G.: The efficiency of histogram-like techniques for database query optimization. The Computer Journal 45, 494–510 (2002)
Chen, J.: On Utilizing New Histogram-Based Methods for Query Optimization. MCS. Thesis, School of Computer Science, Carleton Univ., Ottawa, Canada (2003)
Ioannidis, Y., Poosala, V.: Histogram-based solutions to diverse database estimation problems. IEEE Data Engineering 18, 10–18 (1995)
Ioannidis, Y., Poosala, V.: Balancing histogram optimality and practicality for query result size estimation. In: Proc. of the ACM SIGMOD Conference, pp. 233–244 (1995)
Ioannidis, Y., Poosala, V.: Histogram-based approximation of set-valued query-answers. In: Proc. of the VLDB Conference, vol. 8, pp. 174–185 (1999)
Poosala, V., Ioannidis, Y., Haas, P., Shekita, E.: Improved histograms for selectivity estimation of range predicates. In: Proc. of the ASM SIGMOD Conference, pp. 294–305 (1996)
Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates of sparse data using wavelets. In: Proc. of the ACM SIGMOD Conference, pp. 193–204 (1999)
Thaper, N., Guha, S., Indyk, P., Koudas, N.: Dynamic multidimensional histograms. In: Proc. of the ACM SIGMOD Conference, pp. 428–349 (2002)
Haas, P.J., Swami, A.N.: Sequential sampling procedures for query size estimation. In: Proc. of the ACM SIGMOD Conference, pp. 341–350 (1992)
Haas, P.J., Naughton, J.F., Seshadri, S., Stokes, L.: Sampling-based estimation of the number of distinct values of an attribute. In: Proc. of the VLDB Conference, pp. 311–322 (1995)
Oommen, B.J., Chen, J.: A new histogram method for sparse attributes: The averaged rectangular attribute cardinality map. In: Proceedings of ISICT 2003, the 2003 International Symposium on Informtaion and Communication Technologies, Ireland, pp. 119–125 (2003)
Oommen, B.J., Thiyagarajah, M.: Benchmarking attribute cardinality maps for database systems using the TPC-D specifications. IEEE Transactions on Systems, Man and Cybernetics SMC-33(B), 913–924 (2003)
Oommen, B.J., Thiyagarajah, M.: Rectangular attribute cardinality map: A new histogram-like technique for query optimization. In: Proc. Of the International Database Engineering and Applications Symposium, pp. 3–15 (1999)
Oommen, B.J., Thiyagarajah, M.: Query result size estimation using the trapezoidal attribute cardinality map. In: Proc. of the International Database Engineering and Applications Symposium, pp. 236–242 (2000)
Ioannidis, Y., Christodoulakis, S.: Optimal histograms for limiting worst-case error propagation in the size of join results. ACM Transactions on Database Systems (TODS) 18, 709–748 (1993)
Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of tuples satisfying a condition. In: Proc. of the ACM SIGMOD Conference, pp. 256–276 (1984)
Mannino, M.V., Chu, P., Sager, T.: Statistical profile estimation in database systems. ACM Computing Surveys 20, 191–221 (1988)
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2000)
Oommen, B.J., Chen, J.: The bounded trapezoidal attribute cardinality map and its application to query optimization. In: Proceedings of ICCSI 2003, the 2003 International Conference on Computer Science and Informatics, North Carolina, USA, pp. 422–426 (2003)
Jarke, M., Koch, J.: Query optimization in database systems. ACM Computing Surveys 16, 311–322 (1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oommen, B.J., Chen, J. (2008). On Enhancing Query Optimization in the Oracle Database System by Utilizing Attribute Cardinality Maps. In: Manolopoulos, Y., Filipe, J., Constantopoulos, P., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2006. Lecture Notes in Business Information Processing, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77581-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-77581-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77580-5
Online ISBN: 978-3-540-77581-2
eBook Packages: Computer ScienceComputer Science (R0)