Skip to main content

On Linguistic Summarization of Numerical Time Series Using Fuzzy Logic with Linguistic Quantifiers

  • Chapter
Intelligent Techniques and Tools for Novel System Architectures

Part of the book series: Studies in Computational Intelligence ((SCI,volume 109))

  • 530 Accesses

Summary

We consider an extension to the linguistic summarization of time series data proposed in our previous papers, in particular by introducing a new protoform of the duration based summaries, that is more intuitively appealing. We summarize trends identified here with straight segments of a piecewise linear approximation of time series. Then we employ, as a set of features, the duration, dynamics of change and variability, and assume different, human consistent granulations of their values. The problem boils down to a linguistic quantifier driven aggregation of partial trends that is done via the classic Zadeh’s calculus of linguistically quantified propositions. We present a modification of this calculus using the new protoform of a duration based linguistic summary. We show an application to linguistic summarization of time series data on daily quotations of an investment fund over an eight year period, accounting for the absolute performance of the fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Batyrshin, On granular derivatives and the solution of a granular initial value problem, International Journal Applied Mathematics and Computer Science 12(3) (2002) 403–410.

    MATH  Google Scholar 

  2. I. Batyrshin, L. Sheremetov, Perception based functions in qualitative forecasting, in: I. Batyrshin, J. Kacprzyk, L. Sheremetov, L.A. Zadeh (Eds.), Perception-Based Data Mining and Decision Making in Economics and Finance, Springer, Berlin Heidelberg New York, 2006.

    Google Scholar 

  3. D.-A. Chiang, L.R. Chow, Y.-F. Wang (2000). Mining time series data by a fuzzy linguistic summary system. Fuzzy Sets and Systems, 112, 419–432.

    Article  MATH  Google Scholar 

  4. V. Cross, T. Sudkamp, Similarity and Compatibility in Fuzzy Set Theory: Assessment and Applications, Springer, Berlin Heidelberg New York, 2002.

    MATH  Google Scholar 

  5. J. Kacprzyk, R.R. Yager, Linguistic summaries of data using fuzzy logic, International Journal of General Systems 30 (2001) 33–154.

    Article  MathSciNet  Google Scholar 

  6. J. Kacprzyk, S. Zadrożny, Fuzzy linguistic data summaries as a human consistent, user adaptable solution to data mining, in: B. Gabrys, K. Leiviska, J. Strackeljan (Eds.), Do Smart Adaptive Systems Exist?, Springer, Berlin Heidelberg New York, 2005, pp. 321–339.

    Chapter  Google Scholar 

  7. J. Kacprzyk, S. Zadrożny, Linguistic database summaries and their protoforms: toward natural language based knowledge discovery tools, Information Sciences 173 (2005) 281–304.

    Article  MathSciNet  Google Scholar 

  8. J. Kacprzyk, R.R. Yager, S. Zadrożny, A fuzzy logic based approach to linguistic summaries of databases, International Journal of Applied Mathematics and Computer Science 10 (2000) 813–834.

    MATH  Google Scholar 

  9. J. Kacprzyk, A. Wilbik, S. Zadrożny, Linguistic summarization of trends: a fuzzy logic based approach, in: Proceedings of the 11th International Conference Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, France, July 2–7, 2006, pp. 2166–2172.

    Google Scholar 

  10. J. Kacprzyk, A. Wilbik, S. Zadrożny, Linguistic summaries of time series via a quantifier based aggregation using the Sugeno integral, in: Proceedings of 2006 IEEE World Congress on Computational Intelligence, IEEE Press, Vancouver, BC, Canada, July 16–21, 2006, pp. 3610–3616.

    Google Scholar 

  11. J. Kacprzyk, A. Wilbik, S. Zadrożny, On some types of linguistic summaries of time series, in: Proceedings of the 3rd International IEEE Conference Intelligent Systems, IEEE Press, London, UK, 2006, pp. 373–378.

    Chapter  Google Scholar 

  12. J. Kacprzyk, A. Wilbik, S. Zadrożny, A linguistic quantifier based aggregation for a human consistent summarization of time series, in: J. Lawry, E. Miranda, A. Bugarin, S. Li, M.A. Gil, P. Grzegorzewski, O. Hryniewicz (Eds.), Soft Methods for Integrated Uncertainty Modelling, Springer, Berlin Heidelberg New York, 2006, pp. 186–190.

    Google Scholar 

  13. J. Kacprzyk, A. Wilbik, S. Zadrożny, Capturing the essence of a dynamic behavior of sequences of numerical data using elements of a quasi-natural language, in: Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics, IEEE Press, Taipei, Taiwan, 2006, pp. 3365–3370.

    Chapter  Google Scholar 

  14. J. Kacprzyk, A. Wilbik, S. Zadrożny, Linguistic summarization of time series by using the Choquet integral, in: Proceedings of the IFSA World Congress, 2007.

    Google Scholar 

  15. E. Keogh, M. Pazzani, An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, in: Proc. of the 4th Int’l Conference on Knowledge Discovery and Data Mining, New York, NY, 1998, pp. 239–241.

    Google Scholar 

  16. J. Sklansky, V. Gonzalez, Fast polygonal approximation of digitized curves, Pattern Recognition 12(5) (1980) 327–331.

    Article  Google Scholar 

  17. S. Sripada, E. Reiter, I. Davy, SumTime-mousam: configurable marine weather forecast generator. Expert Update 6(3) (2003) 4–10.

    Google Scholar 

  18. R.R. Yager, A new approach to the summarization of data, Information Sciences 28 (1982) 69–86.

    Article  MATH  MathSciNet  Google Scholar 

  19. L.A. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Computers and Mathematics with Applications 9 (1983) 149–184.

    Article  MATH  MathSciNet  Google Scholar 

  20. L.A. Zadeh, A prototype-centered approach to adding deduction capabilities to search engines – the concept of a protoform, in: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2002), 2002, pp. 523–525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kacprzyk, J., Wilbik, A., Zadrożny, S. (2008). On Linguistic Summarization of Numerical Time Series Using Fuzzy Logic with Linguistic Quantifiers. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77623-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77621-5

  • Online ISBN: 978-3-540-77623-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics