Summary
In this paper we present a new method for mining spatial association rules from geographic databases. On the contrary of most existing approaches that propose syntactic constraints to reduce the number of rules, we propose to use background geographic information extracted from geographic database schemas. In a first step we remove all well known dependences explicitly represented in geographic database schemas. In a second step we remove redundant frequent sets. Experiments show a very significant reduction of the number of rules when both well known dependences and redundant frequent sets are removed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S (eds.), ACM-SIGMOD International Conference on Management of Data. ACM Press, New York, pp 207–216
Koperski K, Han J (1995) Discovery of spatial association rules in geographic information databases. In: Egenhofer MJ, Herring JR (eds.), SSD 4th International Symposium in Large Spatial Databases, (SSD’95). Springer, Berlin Heidelberg New York, pp 47–66
Shekhar S, Chawla S (2003) Spatial Databases: A Tour. Prentice Hall, Upper Saddle River.
Elmasri R, Navathe S (2003) Fundamentals of database systems, 4th edn. Addison Wesley, Reading
Bogorny V, Engel PM, Alvares LO (2006) GEOARM: an interoperable framework to improve geographic data preprocessing and spatial association rule mining. In: Zhang K, Spanoudakis G, Visaggio G (eds.), 18th International Conference on Software Engineering and Knowledge Engineering, (SEKE’06). Knowledge Systems Institute, Skokie
Bastide Y, Pasquier N, Taouil R, Stumme G, Lakhal L (2000) Mining minimal non-redundant association rules using frequent closed itemsets. In: Lloyd JW, Dahl V, Furbach U, Kerber M, Lau KK, Palamidessi C, Pereira LM, Sagiv Y, Stuckey PJ (eds.), First International Conference on Computational Logic. LNCS. Springer, Berlin Heidelberg New York, pp 972–986
Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: Beeri C, Buneman P (eds.), Seventh International Conference on Database Theory (ICDT’99). LNCS 1540. Springer, Berlin Heidelberg New York, pp 398–416
Zaki M, Ching-Jui H (2002) CHARM: an efficient algorithm for closed itemset mining. In: Grossman RL, Han J, Kumar V, Mannila H, Notwani R (eds.), Second SIAM International Conference on Data Mining. SIAM, Philadelphia, pp 457–473
Pei P, Han J, Mao R (2000) CLOSET an efficient algorithm for mining frequent closed itemsets. In: Chen W, Naughton JF, Bernstein PA (eds.), ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD’00). ACM Press, New York
Parent C, Spaccapietra S, Zimanyi E, Donini P, Plazanet C, Vangenot C (1998) Modeling spatial data in the MADS conceptual model, In: Poiker T, Chrisman N (eds.), 8th International Symposium on Spatial Data Handling, (SDH’98), pp 138–150
Borges KAV, Laender AHF, Davis JR C (2001) OMT-G: an object-oriented data model for geographic applications. GeoInformatica, 5(3): 221–260
Booch G, Rumbaugh J, Jacobson I (1998) The unified modeling language: user guide, Addison-Wesley, Reading
Chifosky EJ, Cross JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE Software, 7: 13–17
MCKearney S, Roberts H (1996) Reverse engineering databases for knowledge discovery. In: Simoudis E, Han J, Fayyad U (eds.), Second International Conference on Knowledge Discovery and Data Mining (KDD’96). ACM Press, New York, pp 375–378
Shoval P, Shreiber N (1993) Database reverse engineering: from the relational to the binary relationship model. Data and Knowledge Engineering, 10: 293–315
Bogorny V, Engel PM, Alvares LO (2005) A reuse-based spatial data preparation framework for data mining, In: Chu WC, Juzgado NJ, Wong WE (eds.), 17th International Conference on Software Engineering and Knowledge Engineering, (SEKE’05). Knowledge Systems Institute, Skokie, pp 649–652
Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Bocca JB, Jarke M, Zaniolo C (eds.), 20th International Conference on Very Large Databases (VLDB’94). Morgan Kaufmann, San Francisco
Srikant R, Agrawal R (1995) Mining generalized association rules, In: Dayal U, Gray PMD, Nishio S (eds.), 21st International Conference on Very Large Databases (VLDB’1995). Morgan Kaufmann, San Francisco, pp 407–419
Clementini E, Di Felice P, Koperski K (2000) Mining multiple-level spatial association rules for objects with a broad boundary. Data & Knowledge Engineering, 34(3): 251–270
Mennis J, Liu J (2005) Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Transactions in GIS, 9(1): 5–17
Tan PN, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. In: 8th International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, pp 32–41
Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowledge discovery systems. Knowledge and Data Engineering, IEEE Transactions on Knowledge and Data Engineering, 8(6): 970–974
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bogorny, V., Valiati, J.F., da Silva Camargo, S., Engel, P.M., Alvares, L.O. (2008). Towards Elimination of Redundant and Well Known Patterns in Spatial Association Rule Mining. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-77623-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77621-5
Online ISBN: 978-3-540-77623-9
eBook Packages: EngineeringEngineering (R0)