Skip to main content

Towards Elimination of Redundant and Well Known Patterns in Spatial Association Rule Mining

  • Chapter
Intelligent Techniques and Tools for Novel System Architectures

Summary

In this paper we present a new method for mining spatial association rules from geographic databases. On the contrary of most existing approaches that propose syntactic constraints to reduce the number of rules, we propose to use background geographic information extracted from geographic database schemas. In a first step we remove all well known dependences explicitly represented in geographic database schemas. In a second step we remove redundant frequent sets. Experiments show a very significant reduction of the number of rules when both well known dependences and redundant frequent sets are removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S (eds.), ACM-SIGMOD International Conference on Management of Data. ACM Press, New York, pp 207–216

    Google Scholar 

  2. Koperski K, Han J (1995) Discovery of spatial association rules in geographic information databases. In: Egenhofer MJ, Herring JR (eds.), SSD 4th International Symposium in Large Spatial Databases, (SSD’95). Springer, Berlin Heidelberg New York, pp 47–66

    Google Scholar 

  3. Shekhar S, Chawla S (2003) Spatial Databases: A Tour. Prentice Hall, Upper Saddle River.

    Google Scholar 

  4. Elmasri R, Navathe S (2003) Fundamentals of database systems, 4th edn. Addison Wesley, Reading

    Google Scholar 

  5. Bogorny V, Engel PM, Alvares LO (2006) GEOARM: an interoperable framework to improve geographic data preprocessing and spatial association rule mining. In: Zhang K, Spanoudakis G, Visaggio G (eds.), 18th International Conference on Software Engineering and Knowledge Engineering, (SEKE’06). Knowledge Systems Institute, Skokie

    Google Scholar 

  6. Bastide Y, Pasquier N, Taouil R, Stumme G, Lakhal L (2000) Mining minimal non-redundant association rules using frequent closed itemsets. In: Lloyd JW, Dahl V, Furbach U, Kerber M, Lau KK, Palamidessi C, Pereira LM, Sagiv Y, Stuckey PJ (eds.), First International Conference on Computational Logic. LNCS. Springer, Berlin Heidelberg New York, pp 972–986

    Google Scholar 

  7. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: Beeri C, Buneman P (eds.), Seventh International Conference on Database Theory (ICDT’99). LNCS 1540. Springer, Berlin Heidelberg New York, pp 398–416

    Google Scholar 

  8. Zaki M, Ching-Jui H (2002) CHARM: an efficient algorithm for closed itemset mining. In: Grossman RL, Han J, Kumar V, Mannila H, Notwani R (eds.), Second SIAM International Conference on Data Mining. SIAM, Philadelphia, pp 457–473

    Google Scholar 

  9. Pei P, Han J, Mao R (2000) CLOSET an efficient algorithm for mining frequent closed itemsets. In: Chen W, Naughton JF, Bernstein PA (eds.), ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD’00). ACM Press, New York

    Google Scholar 

  10. Parent C, Spaccapietra S, Zimanyi E, Donini P, Plazanet C, Vangenot C (1998) Modeling spatial data in the MADS conceptual model, In: Poiker T, Chrisman N (eds.), 8th International Symposium on Spatial Data Handling, (SDH’98), pp 138–150

    Google Scholar 

  11. Borges KAV, Laender AHF, Davis JR C (2001) OMT-G: an object-oriented data model for geographic applications. GeoInformatica, 5(3): 221–260

    Article  MATH  Google Scholar 

  12. Booch G, Rumbaugh J, Jacobson I (1998) The unified modeling language: user guide, Addison-Wesley, Reading

    Google Scholar 

  13. Chifosky EJ, Cross JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE Software, 7: 13–17

    Article  Google Scholar 

  14. MCKearney S, Roberts H (1996) Reverse engineering databases for knowledge discovery. In: Simoudis E, Han J, Fayyad U (eds.), Second International Conference on Knowledge Discovery and Data Mining (KDD’96). ACM Press, New York, pp 375–378

    Google Scholar 

  15. Shoval P, Shreiber N (1993) Database reverse engineering: from the relational to the binary relationship model. Data and Knowledge Engineering, 10: 293–315

    Article  Google Scholar 

  16. Bogorny V, Engel PM, Alvares LO (2005) A reuse-based spatial data preparation framework for data mining, In: Chu WC, Juzgado NJ, Wong WE (eds.), 17th International Conference on Software Engineering and Knowledge Engineering, (SEKE’05). Knowledge Systems Institute, Skokie, pp 649–652

    Google Scholar 

  17. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Bocca JB, Jarke M, Zaniolo C (eds.), 20th International Conference on Very Large Databases (VLDB’94). Morgan Kaufmann, San Francisco

    Google Scholar 

  18. Srikant R, Agrawal R (1995) Mining generalized association rules, In: Dayal U, Gray PMD, Nishio S (eds.), 21st International Conference on Very Large Databases (VLDB’1995). Morgan Kaufmann, San Francisco, pp 407–419

    Google Scholar 

  19. Clementini E, Di Felice P, Koperski K (2000) Mining multiple-level spatial association rules for objects with a broad boundary. Data & Knowledge Engineering, 34(3): 251–270

    Article  MATH  Google Scholar 

  20. Mennis J, Liu J (2005) Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Transactions in GIS, 9(1): 5–17

    Article  Google Scholar 

  21. Tan PN, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. In: 8th International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, pp 32–41

    Google Scholar 

  22. Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowledge discovery systems. Knowledge and Data Engineering, IEEE Transactions on Knowledge and Data Engineering, 8(6): 970–974

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogorny, V., Valiati, J.F., da Silva Camargo, S., Engel, P.M., Alvares, L.O. (2008). Towards Elimination of Redundant and Well Known Patterns in Spatial Association Rule Mining. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77623-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77621-5

  • Online ISBN: 978-3-540-77623-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics