Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 109))

  • 508 Accesses

Summary

Definitions of 174 intuitionistic fuzzy logic implications are introduced. Some of their properties are studied and some open problems, related to them are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Atanassov. Two variants of intuitonistc fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia, 1988.

    Google Scholar 

  2. K. Atanassov. Intuitionistic Fuzzy Sets. Springer Physica, Heidelberg, 1999.

    MATH  Google Scholar 

  3. K. Atanassov. Intuitionistic fuzzy implications and Modus Ponens. Notes on Intuitionistic Fuzzy Sets, 11(1), 2005, 1–5.

    Google Scholar 

  4. K. Atanassov. A new intuitionistic fuzzy implication from a modal type. Advanced Studies in Contemporary Mathematics, 12(1), 2006, 117–122.

    MATH  MathSciNet  Google Scholar 

  5. K. Atanassov. On some intuitionistic fuzzy implications. Comptes Rendus de l’Academie bulgare des Sciences, Tome 59(1), 2006, 19–24.

    MATH  MathSciNet  Google Scholar 

  6. K. Atanassov. On eight new intuitionistic fuzzy implications. Proceedings of IEEE Conference “Intelligent Systems’06”, London, 5–7 Sept. 2006, 741–746.

    Google Scholar 

  7. K. Atanassov. On the implications and negations over intuitionistic fuzzy sets. Proceedings of the Scientific Conf. of Burgas Free University, Burgas, 9–11 June 2006, Vol. III, 374–384.

    Google Scholar 

  8. K. Atanassov and B. Kolev. On an intuitionistic fuzzy implication from a possibilistic type. Advanced Studies in Contemporary Mathematics, 12(1), 2006, 111–116.

    MATH  MathSciNet  Google Scholar 

  9. K. Atanassov and T. Trifonov, On a new intuitionistic fuzzy implication from Gödel’s type. Proceedings of the Jangjeon Mathematical Society, 8(2), 2005, 147–152.

    MATH  MathSciNet  Google Scholar 

  10. K. Atanassov and T. Trifonov, Two new intuitionistic fuzzy implications. Advanced Studies in Contemporary Mathematics, 13(1), 2006, 69–74.

    MATH  MathSciNet  Google Scholar 

  11. R. Feys. Modal Logics. Gauthier-Villars, Paris, 1965.

    MATH  Google Scholar 

  12. G. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey, 1995.

    MATH  Google Scholar 

  13. H. Rasiova and R. Sikorski. The Mathematics of Metamathematics, Warszawa, Polish Academy of Science, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atanassov, K.T. (2008). On the Intuitionistic Fuzzy Implications and Negations. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77623-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77621-5

  • Online ISBN: 978-3-540-77623-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics